Цитата:
Yrptious в сообщении #141531 писал(а):
Одинаковые элементы по определению считаются неотличимыми, поэтому каждый элемент множ-ва входит в него в единственном экземпляре.
Someone:
Бред. Например, электроны одинаковые (неотличимые), но их больше одного.
OZH:
Имеется в виду, например, что {x,x}={x}.
Someone:
Не понял. В теории множеств различные элементы безусловно считаются различимыми. Поскольку х - один элемент, то это множество содержит только один элемент. Данное равенство - следствие определения равенства множеств. Для электронов ситуация другая: их много, но они неразличимы.
Возьмем, например, две точки. Они идентичны ? Казалось бы да, но задайтесь вопросом, как мы тогда их отличаем, почему мы говорим, что их две, а не одна. Ведь если бы они были действительно идентичны, т.е. между ними не было бы никакой разницы, мы не могли бы сказать, что их две.
Может быть две точки уникальны ? Но задайтесь вопросом, если они действительно уникальны, т.е. не имеют ничего общего, как можем мы сказать, что их две или что они "уникальны". Ведь для этого как раз и потребуется найти в них нечто общее, например, то что они "уникальны".
Мощность любого конечного множества можно обозначить произвольным элементом множества R.

~

~

~

…
q,a,b… – совершенно не связанные между собой, произвольные элементы

. Предположение, что они в общем случае связаны отношением порядка взято с потолка, необоснованно ничем.
Элементы, вида q`… определяют мощности соответствующих конечных множеств безотносительно порядка элементов в них и того, что это за элементы, кроме того, сами эти элементы в общем случае не обязаны быть связаны отношением порядка. То, что элементы

можно сделать элементами соответствующих конечных множеств, мощности которых они определяют (например,

- очень воодушевляет, однако, это вовсе не означает, что так оно и есть на самом деле.
Более того, даже если мы примем, что:

~

~
…
тождество q`=q`, q``=q`` установлено аксиоматически – это вопрос веры, на самом деле вполне может быть, что мы уравняли совершенно разные элементы: q`=a``… и т.д.
Иными словами, элементов в множестве R достаточно, чтобы никогда (ни для одного конечного множества) не допустить, чтобы элемент, определяющий мощность этого множества стал бы элементом этого множества, и даже, если мы примем, что это все же имеет место быть, мы никогда не сможем установить действительно ли элемент, которым мы обозначили мощность конечного множества тождественен одному из его элементов.

- это всего - лишь структура, определяющая изоморфные модели, среди которых могут быть и не изоморфные. Мы не знаем, что первая единица и единица внутри первого, второго и т.д. множества тождественны.
Если считать числа точками, можно сообразить, как разрешается приведенный мной «парадокс» идентичности/уникальности. Если нам так нужно, мы отвлекаемся от возможности не тождества единиц в конечных множествах и они становятся идентичными, если нам надо сделать их уникальными, мы отвлечемся от возможности их тождества и они станут уникальными. Правда, в общем случае, ни того ни другого в абсолютном смысле мы не добьемся.