2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение25.12.2023, 05:21 
Аватара пользователя


22/07/08
1416
Предместья
sergey zhukov в сообщении #1623713 писал(а):
Я это даже численно проверил.

Что характерно, с Вами никто и не спорил с самого начала, даже Лукомор! :-) Который сразу написал, что
Лукомор в сообщении #1623638 писал(а):
В процитированном отрывке неправильная попытка изложить известный "парадокс мальчика и девочки".

Иными словами, та задача, которая Вами процитирована, правильно решена у Вас. Там вероятность действительно равна $\frac{1}{2}$.
Но автор этой задачи попытался своей задачей проиллюстрировать широко известный в узких кругах "парадокс мальчика и девочки", и подогнал ответ под этот парадокс.
Вот, собственно, и разгадка проблемы.
А Лукомор сразу начал решать другую задачу, забыв ее сформулировать. :-)
Это бывает у меня..

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение25.12.2023, 17:17 


17/10/16
4926
В той же книжке Ушаков рассматривает задачу с двумя конвертами: вам дали на выбор два конверта, в каждом из них какая-то случайная сумма денег. Вы вскрыли один и узнали, сколько там. Что лучше: оставить себе этот конверт или поменять его на второй (но уже бесповоротно)? Решение задачи фактически такое: вероятность обмена должна просто монотонно падать в зависимости от величины суммы в первом конверте. Т.е. мы принимаем: чем больше сумма в первом конверте, тем вероятнее, что это наибольшая сумма из двух. В общем, так это и есть.

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 04:02 
Аватара пользователя


22/07/08
1416
Предместья
sergey zhukov в сообщении #1623805 писал(а):
Т.е. мы принимаем: чем больше сумма в первом конверте, тем вероятнее, что это наибольшая сумма из двух.

На практике это зависит от нашего ожидания увидеть некоторую сумму в конверте.
Допустим, что в одном конверте, ${100}$ долларов
а в другом ${150}$
Если я ожидаю увидеть в конверте ${50}$ долларов, то, независимо от того, какой конверт я выбрал, вероятность обмена равна нулю. Если же, по моим понятиям, в конверте должно быть не менее ${500}$ долларов, то при выборе любого конверта вероятность обмена равна единице...

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 07:05 
Аватара пользователя


22/07/22

897
sergey zhukov в сообщении #1623805 писал(а):
в каждом из них какая-то случайная сумма денег. Вы вскрыли один и узнали, сколько там.

А какое вероятностное распределение? Иначе задача малоосмыслена

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 07:52 


17/10/16
4926
Doctor Boom
Любое распределение. Это все равно. Решение у автора немного не такое (оно имеет произвольную границу), но универсальное решение (не самое оптимальное, но всегда гарантирующее некоторый успех по отношению в случайному выбору) такое: вероятность обмена равна $P=e^{-x}$, где $x$ - сумма в первом конверте.

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 08:35 
Аватара пользователя


22/07/08
1416
Предместья
sergey zhukov в сообщении #1623854 писал(а):
но универсальное решение (не самое оптимальное, но всегда гарантирующее некоторый успех по отношению в случайному выбору) такое: вероятность обмена равна $P=e^{-x}$, где $x$ - сумма в первом конверте.


Еще раз смотрим на вопрос задачи:

sergey zhukov в сообщении #1623805 писал(а):
Что лучше: оставить себе этот конверт или поменять его на второй (но уже бесповоротно)?


И убеждаемся, что, по мнению автора, меняться не нужно никогда,
поскольку уже сумме в первом конверте, равной одному рублю $(x=1)$
соответствует вероятность обмена $P\approx0,37$

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 08:51 


17/10/16
4926
Лукомор
Ну, вы же понимаете, что это работает. Просто эффект может быть очень мал. Нулю-то он никогда не равен. Конечно, для каждого распределения сумм в конвертах, если мы его знаем, можно подобрать специальную стратегию, которая гораздо лучше. Но и эта худо-бедно всегда работает. Вообще, вероятность обмена должна быть просто монотонно убывающей функцией суммы в первом конверте.

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 09:20 
Аватара пользователя


22/07/08
1416
Предместья
sergey zhukov в сообщении #1623857 писал(а):
Просто эффект может быть очень мал. Нулю-то он никогда не равен

Эффект от обмена может быть положительным, если во втором конверте денег больше, чем в первом. Или отрицательным, если во втором конверте денег меньше.
Говорить тут о какой-то стратегии смысла нет вообще. Чистый случай.

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 09:37 


17/10/16
4926
Лукомор
Попробуйте промоделировать. Убедитесь.

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 11:10 
Аватара пользователя


22/07/08
1416
Предместья
sergey zhukov в сообщении #1623860 писал(а):
Попробуйте промоделировать. Убедитесь.

Давайте попробуем вместе.
Положим в один конверт два рубля, в другой три рубля.
С вероятностью $P=\frac{1}{2}$ выбрали один из двух клнвертов, не важно какой. Потому что сумма маленькая и в том и в другом случае, следовательно вероятность, что мы выбрали конверт с меньшей суммой в любом случае высокая.
Нужно менять конверт.
Поменяв два рубля на три, получим дополнительный рубль.
Поменяв три рубля на два теряем рубль
Но в любом случае мы выиграли, поскольку до вскрытия первого конверта у нас и рубля не было.

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 11:52 


17/10/16
4926
Лукомор
Нет, "высокая/низкая" и "маленькая/большая" - это не моделирование. Впрочем, я думаю, что мы с вами тут все и так понимаем одинаково правильно.

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 12:31 
Заслуженный участник
Аватара пользователя


11/03/08
9996
Москва
Без задания распределения постановка бессмысленна. На этом основан парадокс обмена - если о суммах в конвертах неизвестно ничего, то, поскольку сумма в другом конверте имеет бесконечно много вариантов, больших суммы в первом конверте, и всего лишь конечное число меньших, надо меняться (но при этом второй участник, с которым меняются, тоже желает меняться). Но это, строго говоря, не парадокс, а софизм, в котором "забывается", что равномерное распределение на бесконечном числе целочисленных исходов не строится.
А если есть информация, то возможна и стратегия (скажем, количество денег равновероятно выбирается от 1 до N, тогда надо менять, есть в конверте меньше $\frac{N+1}2$)

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 12:37 
Аватара пользователя


22/07/08
1416
Предместья
sergey zhukov в сообщении #1623873 писал(а):
Впрочем, я думаю, что мы с вами тут все и так понимаем одинаково правильно.

А я об этом вообще не думаю... :mrgreen:

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 12:39 


17/10/16
4926
Евгений Машеров
Не бессмысленна. Парадокс обмена основан просто на невозможной предпосылке (невозможном распределении). Но при любом возможном распределении (что мы всегда имеем на практике) это распределение не требуется знать для успеха нашей стратегии.

 Профиль  
                  
 
 Re: Вероятность нахождения предмета в ящике стола
Сообщение26.12.2023, 13:42 
Аватара пользователя


22/07/11
868
sergey zhukov в сообщении #1623880 писал(а):
это распределение не требуется знать для успеха нашей стратегии.
Согласен с
Евгений Машеров в сообщении #1623876 писал(а):
Без задания распределения постановка бессмысленна.
Например, берем генератор случайных чисел от 1 до 1000000. В первый конверт кладем случайное число, во второй (кидаем монетку) и кладем на 1 рубль больше или меньше.
Какая тут стратегия поможет?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 68 ]  На страницу Пред.  1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group