2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Школьная программа. Алгебра. Десять доказательтв неравенств
Сообщение23.01.2023, 08:13 


14/06/22
27
Доказать неравенствa разными способами из школьной программы.
Желательно 5 или больше доказательств для каждого неравенства.


$x^4+x^3+2x^2+2x+3 > 0$  $\forall x\in\mathbb{R}$$  (1)$

$\frac{1}{\sin^2x} \leq \frac{1}{x^2}+1-\frac{4}{\pi^2}$ $\forall x\in (0;\frac{\pi}{2}]$  (2)$


Первое решение для $(1)$

$(x^2+\frac{1}{2}x)^2+\frac{3}{4}x^2+(x+1)^2+2>0$

 Профиль  
                  
 
 Re: Школьная программа. Алгебра. Десять доказательтв неравенств
Сообщение23.01.2023, 14:06 
Заслуженный участник
Аватара пользователя


13/08/08
14181
(1) можно найти минимумы $x^4+x^3$ и $2x^2+2x$ по отдельности или хотя бы оценить их. Или при ином разбиении на слагаемые

 Профиль  
                  
 
 Re: Школьная программа. Алгебра. Десять доказательтв неравенств
Сообщение23.01.2023, 15:02 
Заслуженный участник


03/01/09
1612
москва
При $x\ne 1$ левую часть неравенства (1) можно записать в виде: $\dfrac {x^5-1}{x-1}+\dfrac {x^3-1}{x-1}+1.$

 Профиль  
                  
 
 Re: Школьная программа. Алгебра. Десять доказательтв неравенств
Сообщение23.01.2023, 15:33 
Заслуженный участник
Аватара пользователя


23/08/07
5178
Нов-ск
$(x^3+1)(x+1) + (2x^2+x+2) > 0$

 Профиль  
                  
 
 Re: Школьная программа. Алгебра. Десять доказательтв неравенств
Сообщение23.01.2023, 17:39 


14/06/22
27
Уже 4 для (1). Спасибо.

Пятое для (1)
Доказательство для (1) с применением вспомогательного неравенства $\ln(x+1) \leqslant x$, $x > -1$
Неравенство несложно вывести из свойства вогнутости логарифмической функции.

$P(x)=x^4+x^3+2x^2+2x+3=x(x+1)(x^2+2)+3 > 0, x\in(-\infty; -1]$

$\implies\ln(P(x)+1) \leqslant P(x), x > -1$

$\implies 0<\ln((x+1)^2 +1)+\ln((x-\frac{1}{2})^2+\frac{7}{4}) \leqslant x^4+x^3+2x^2+2x+3,  x>-1$


----
Ничего не могу придумать без производных для неравенства (2).

 Профиль  
                  
 
 Re: Школьная программа. Алгебра. Десять доказательтв неравенств
Сообщение01.02.2023, 15:55 


14/06/22
27
Klein в сообщении #1578367 писал(а):
Доказать неравенствa разными способами из школьной программы.
Желательно 5 или больше доказательств для каждого неравенства.


$\frac{1}{\sin^2x} \leq \frac{1}{x^2}+1-\frac{4}{\pi^2}$ $\forall x\in (0;\frac{\pi}{2}]$  (2)$


Можно доказать используя следующую подстановку

$tg(\frac{x}{2})=t$
$sin(x)=\frac{2t}{1+t^2}$
$ x\in (0;\frac{\pi}{2}]$, $t\in (0;1]$

После подстановки и решения неравенства $(2)$ получаем

$t>0$, $0<x\leq2\pi\sqrt\frac{t^2}{\pi^2 t^4 - 2\pi^2 t^2 + 16 t^2 +\pi^2}$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group