2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 59, 60, 61, 62, 63, 64, 65 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение21.05.2022, 22:18 
Аватара пользователя
VAL в сообщении #1555110 писал(а):
Так что, уже не смотреть? Я только собрался с силами...

Смотреть :wink: . Но с учетом правок.

Продолжим вот с этого места:

EUgeneUS в сообщении #1555109 писал(а):
$2 a^{q-1} = \sqrt{B}-1$

Если $\sqrt{B} = C^n$, где $n$ - натуральное число больше единицы, а $C$ - целое нечетное (а оно обязано быть нечётным)
то $C^n -1$ раскладывается в произведение двух чётных чисел, что несовместимо с $2 a^{q-1}$, так как $a$ - тоже нечетное.

Итого $gcd(p-1, q-1)=2$, всё таки оказывается доказанным. В том смысле, что для других $p, q$ четверок быть не может.

Только алгоритм проверки конечным перебором таки (пока) не восстановился...

 
 
 
 Re: Пентадекатлон мечты
Сообщение21.05.2022, 23:31 
EUgeneUS в сообщении #1555113 писал(а):
Если $\sqrt{B} = C^n$, где $n$ - натуральное число больше единицы, а $C$ - целое нечетное (а оно обязано быть нечётным)
то $C^n -1$ раскладывается в произведение двух чётных чисел, что несовместимо с $2 a^{q-1}$, так как $a$ - тоже нечетное.


Это верно только для чётных $n$. Но, например, для $n = 3$ получим $c^3-1=(c-1)(c^2+c+1)$, где вторая скобка нечётная и при $c \equiv 3 \pmod{4}$ будет $c^3-1 \equiv 2 \pmod{4}$. Но тему подробно не читал, возможно условие чётности $n$ вы упомянули где-то ранее.

 
 
 
 Re: Пентадекатлон мечты
Сообщение21.05.2022, 23:32 
Аватара пользователя
mathematician123 в сообщении #1555115 писал(а):
Это верно только для чётных $n$.

Спасибо.
Нет не использовал...

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 00:56 
Аватара пользователя
Но это не беда. :wink:

$gcd(p-1, q-1) = 4$ запретился по "четным степеням".
А из нечетных нас интересует только тройка :wink:, проверим её отдельно.

так четно только $C-1$, то сразу $C=3$. Это оставляет только вариант $\sqrt{B} = 3^{(pq-1)/2}$
при этом $2 = 3^{(pq-1)/2} - 1$, откуда $pq = 7$. А этого быть не может, так $p, q$ - различные простые числа.

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 15:44 
Аватара пользователя
VAL в сообщении #1554985 писал(а):
Впрочем, новое название годится лишь до тех пор, пока Антон не найдет и обоснует минимальный пентадекатлон.

Звучит примерно как: "Антоха, живи 100 лет!" :-)

Есть у меня интересные наблюдения, а пока что табличка:

$\tikz[scale=.0785]{
\fill[green!60!blue] (10,210) rectangle (80,220);
\fill[green!60!blue] (10,200) rectangle (30,210);
\fill[green!60!blue] (10,190) rectangle (70,200);
\fill[green!60!blue] (10,180) rectangle (50,190);
\fill[green!60!blue] (10,170) rectangle (30,180);
\fill[green!60!blue] (10,160) rectangle (40,170);
\fill[green!60!blue] (10,150) rectangle (20,160);
\fill[green!60!blue] (10,140) rectangle (50,150);
\fill[green!60!blue] (10,130) rectangle (80,140);
\fill[green!60!blue] (10,120) rectangle (50,130);
\fill[green!60!blue] (10,110) rectangle (20,120);
\fill[green!60!blue] (10,100) rectangle (30,110);
\fill[green!60!blue] (10,90) rectangle (20,100);
\fill[green!60!blue] (10,80) rectangle (50,90);
\fill[green!60!blue] (10,70) rectangle (40,80);
\fill[green!60!blue] (10,60) rectangle (50,70);
\fill[green!60!blue] (10,50) rectangle (20,60);
\fill[green!60!blue] (10,40) rectangle (30,50);
\fill[green!60!blue] (10,30) rectangle (50,40);
\fill[green!60!blue] (10,20) rectangle (20,30);
\fill[green!60!blue] (10,10) rectangle (40,20);
\fill[green!60!blue] (10,0) rectangle (50,10);
\draw[step=10cm] (0,0) grid +(200,230);
\fill [black] (145,215) circle (1);
\fill [black] (45,205) circle (1);
\fill [black] (65,185) circle (1);
\fill [black] (45,175) circle (1);
\fill [black] (145,165) circle (1);
\fill [black] (45,155) circle (1);
\fill [black] (65,145) circle (1);
\fill [black] (65,125) circle (1);
\fill [black] (45,115) circle (1);
\fill [black] (45,95) circle (1);
\fill [black] (65,85) circle (1);
\fill [black] (65,65) circle (1);
\fill [black] (45,55) circle (1);
\fill [black] (195,45) circle (1);
\fill [black] (65,35) circle (1);
\fill [black] (65,25) circle (1);
\fill [black] (65,15) circle (1);
\node at (15,225){\text{3}};
\node at (25,225){\text{4}};
\node at (35,225){\text{5}};
\node at (45,225){\text{6}};
\node at (55,225){\text{7}};
\node at (65,225){\text{8}};
\node at (75,225){\text{9}};
\node at (85,225){\text{10}};
\node at (95,225){\text{11}};
\node at (105,225){\text{12}};
\node at (115,225){\text{13}};
\node at (125,225){\text{14}};
\node at (135,225){\text{15}};
\node at (145,225){\text{16}};
\node at (155,225){\text{17}};
\node at (165,225){\text{18}};
\node at (175,225){\text{19}};
\node at (185,225){\text{20}};
\node at (195,225){\text{21}};
\node at (5,215){\text{12}};
\node at (15,215){\text{1274}};
\node at (25,215){\text{1e4}};
\node at (35,215){\text{2e5}};
\node at (45,215){\text{3e8}};
\node at (55,215){\text{1e11}};
\node at (65,215){\text{1e13}};
\node at (75,215){\text{1e13}};
\node at (85,215){\text{5e18}};
\node at (95,215){\text{6e23}};
\node at (105,215){\text{2e23}};
\node at (115,215){\text{1e30}};
\node at (125,215){\text{4e36}};
\node at (135,215){\text{6e37}};
\node at (5,205){\text{18}};
\node at (15,205){\text{9e5}};
\node at (25,205){\text{6e19}};
\node at (35,205){\text{6e33}};
\node at (5,195){\text{24}};
\node at (15,195){\text{7e4}};
\node at (25,195){\text{2e6}};
\node at (35,195){\text{1e7}};
\node at (45,195){\text{9e8}};
\node at (55,195){\text{3e11}};
\node at (65,195){\text{1e13}};
\node at (75,195){\text{2e13}};
\node at (85,195){\text{2e16}};
\node at (95,195){\text{1e17}};
\node at (105,195){\text{6e21}};
\node at (115,195){\text{5e26}};
\node at (125,195){\text{2e35}};
\node at (135,195){\text{1e37}};
\node at (145,195){\text{3e41}};
\node at (155,195){\text{7e42}};
\node at (5,185){\text{28}};
\node at (15,185){\text{2e10}};
\node at (25,185){\text{4e15}};
\node at (35,185){\text{5e22}};
\node at (45,185){\text{4e30}};
\node at (55,185){\text{4e41}};
\node at (5,175){\text{30}};
\node at (15,175){\text{1e11}};
\node at (25,175){\text{1e33}};
\node at (35,175){\text{6e53}};
\node at (5,165){\text{36}};
\node at (15,165){\text{4e7}};
\node at (25,165){\text{2e11}};
\node at (35,165){\text{9e13}};
\node at (45,165){\text{2e18}};
\node at (55,165){\text{1e28}};
\node at (65,165){\text{3e39}};
\node at (75,165){\text{3e49}};
\node at (85,165){\text{1e54}};
\node at (95,165){\text{1e61}};
\node at (105,165){\text{7e72}};
\node at (115,165){\text{1e72}};
\node at (5,155){\text{42}};
\node at (15,155){\text{3e14}};
\node at (25,155){\text{6e48}};
\node at (35,155){\text{1e69}};
\node at (5,145){\text{44}};
\node at (15,145){\text{9e15}};
\node at (25,145){\text{1e25}};
\node at (35,145){\text{6e36}};
\node at (45,145){\text{3e49}};
\node at (55,145){\text{5e65}};
\node at (5,135){\text{48}};
\node at (15,135){\text{5e6}};
\node at (25,135){\text{1e8}};
\node at (35,135){\text{2e9}};
\node at (45,135){\text{8e10}};
\node at (55,135){\text{3e12}};
\node at (65,135){\text{1e13}};
\node at (75,135){\text{6e14}};
\node at (85,135){\text{2e17}};
\node at (95,135){\text{1e18}};
\node at (105,135){\text{9e18}};
\node at (115,135){\text{3e25}};
\node at (125,135){\text{4e43}};
\node at (145,135){\text{2e44}};
\node at (155,135){\text{4e44}};
\node at (165,135){\text{7e44}};
\node at (175,135){\text{5e48}};
\node at (5,125){\text{52}};
\node at (15,125){\text{1e19}};
\node at (25,125){\text{7e29}};
\node at (35,125){\text{3e43}};
\node at (45,125){\text{1e59}};
\node at (55,125){\text{1e77}};
\node at (5,115){\text{54}};
\node at (15,115){\text{8e13}};
\node at (25,115){\text{4e38}};
\node at (35,115){\text{3e57}};
\node at (5,105){\text{60}};
\node at (15,105){\text{2e10}};
\node at (25,105){\text{9e15}};
\node at (35,105){\text{3e22}};
\node at (45,105){\text{8e28}};
\node at (55,105){\text{1e39}};
\node at (65,105){\text{1e58}};
\node at (75,105){\text{2e78}};
\node at (85,105){\text{2e80}};
\node at (95,105){\text{5e84}};
\node at (5,95){\text{66}};
\node at (15,95){\text{8e21}};
\node at (25,95){\text{1e69}};
\node at (35,95){\text{e101}};
\node at (5,85){\text{68}};
\node at (15,85){\text{6e24}};
\node at (25,85){\text{1e40}};
\node at (35,85){\text{3e56}};
\node at (45,85){\text{1e72}};
\node at (55,85){\text{e103}};
\node at (5,75){\text{72}};
\node at (15,75){\text{2e8}};
\node at (25,75){\text{2e11}};
\node at (35,75){\text{4e13}};
\node at (45,75){\text{8e17}};
\node at (55,75){\text{1e23}};
\node at (65,75){\text{6e32}};
\node at (5,65){\text{76}};
\node at (15,65){\text{4e27}};
\node at (25,65){\text{1e44}};
\node at (35,65){\text{3e64}};
\node at (45,65){\text{8e86}};
\node at (55,65){\text{e111}};
\node at (5,55){\text{78}};
\node at (15,55){\text{9e24}};
\node at (25,55){\text{1e81}};
\node at (35,55){\text{e113}};
\node at (5,45){\text{84}};
\node at (15,45){\text{1e14}};
\node at (25,45){\text{1e22}};
\node at (35,45){\text{2e29}};
\node at (45,45){\text{3e38}};
\node at (5,35){\text{88}};
\node at (15,35){\text{5e15}};
\node at (25,35){\text{6e24}};
\node at (35,35){\text{2e34}};
\node at (45,35){\text{1e46}};
\node at (55,35){\text{4e58}};
\node at (5,25){\text{90}};
\node at (15,25){\text{6e17}};
\node at (25,25){\text{2e49}};1
\node at (35,25){\text{1e89}};
\node at (45,25){\text{}};
\node at (55,25){\text{}};
\node at (5,15){\text{92}};
\node at (15,15){\text{1e34}};
\node at (25,15){\text{3e53}};
\node at (35,15){\text{1e78}};
\node at (45,15){\text{e110}};
\node at (55,15){\text{e138}};
\node at (5,5){\text{96}};
\node at (15,5){\text{8e8}};
\node at (25,5){\text{1e10}};
\node at (35,5){\text{1e11}};
\node at (45,5){\text{5e13}};
\node at (55,5){\text{1e15}};
\node at (65,5){\text{1e19}};
\node at (75,5){\text{9e19}};
\node at (85,5){\text{6e42}};
}$

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 18:59 
EUgeneUS в сообщении #1555113 писал(а):
Смотреть :wink: . Но с учетом правок.
Что-то я увяз :cry:
Давайте, попробуем по-другому.
Делаю шаг назад. И дальше сверяюсь по шагам.
Пусть $k=2pq$ и цепочка содержит четыре числа.
Тогда, вроде, возможны 2 случая:
1. $n_2$ кратно 3. Тогда четверка - $n_0, n_1, n_2, n_3$, где $n_2=2\cdot 3^{p-1}\cdot r^{q-1}$
2. $n_0$ кратно 3. Тогда четверка - $n_7, n_0, n_1, n_2$, где $n_0=2^{p-1}\cdot 3\cdot r^{q-1}$

У Вас так?

Какая-то заколдованная штука :roll:
Я уже не уверен, что во втором случае 3 обязано входить в $n_0$ в первой степени.

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 20:55 
Аватара пользователя
VAL в сообщении #1555192 писал(а):
У Вас так?


Нет. В смысле, я не оспариваю этот вывод, но схема другая.

1. Рассматриваем возможный набор факторизаций (их 5).
2. Расставляем в них двойку (но не тройку), получаем десять видов факторизаций с двойкой.
3. Два из них могут быть только в $n_2$, но не в $n_0$. Восемь, наоборот, могут быть только в $n_0$, но не в $n_2$. И начинаем их последовательно исключать.
(см. тут)
4. Три из восьми исключаются сразу, так как (при рассмотрении паттернов, то есть связи $n_0 +2 = n_2$) приводят к неразрешимому уравнению вида $A^2 - B^2 = 1$
5. Три из оставшихся пяти ("экзотические") запрещаются отдельным доказательством (см. тут).
6. Итого, в $n_0$ может быть только два вида факторизаций (при рассмотрении в общем виде, это - одна факторизация):
$2^{p-1} a^{q-1} b$
$2^{q-1} a^{p-1} b$

Можно ли считать это доказанным? Или там (возможно, в исключении "экзотических" факторизаций") имеются потенциальные дырки?
Факт, что тройка стоит либо в $n_0$, либо в $n_2$ до этого использовался только один раз - при исключении одной из "экзотических" факторизаций.

7. Далее рассматривается уравнение
$2^{q-1} a^{p-1} b = B^2 - 1$
и производится сокращение двойки.

8. Что приводит к четырем вариантам уравнений, связывающих $a^{p-1}$ и $b. (2а, 2б, 2в, 2г тут)

9. Два из них
(2б) $b = \frac{a^{q-1} - 1}{2^{p-4}}$
(2в) $b = 2^{p-4} a^{q-1} + 1$

Были исключены сразу же.

10. Вариант
(2г) $b = 2^{p-4} a^{q-1} - 1$
Был рассмотрен отдельно (пункт 4)
И он привел к объявленным результатам:
$gcd(p-1, q-1) = 2$
Возможность проверки $M(2pq) \le 3$ конечным перебором для заданных $p, q$

11. Однако, вариант
(2а) $b = \frac{a^{q-1} + 1}{2^{p-4}}$
Был исключен ошибочно. И с ним возникли некоторые сложности.
Которые (вроде бы) были решены.

12. Кроме того, только сейчас заметил,
при исключении варианта 2в, не был учтен случай $a=3$ :-(
UPD: впрочем, при рассмотрении 2в, также как и 2г, то это приведет к таким же выводам.

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 21:08 
EUgeneUS в сообщении #1555199 писал(а):
6. Итого, в $n_0$ может быть только два вида факторизаций (при рассмотрении в общем виде, это - одна факторизация):
$2^{p-1} a^{q-1} b$
$2^{q-1} a^{p-1} b$

Можно ли считать это доказанным?
Полагаю, что да.
Предлагаю разобраться с основным вариантом. Если удастся свести его к противоречию, можно будет еще раз аккуратно перепроверить экзотические.
А иначе в этом нет смысла.

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 21:35 
Аватара пользователя
Приведу доказательство для варианта (2а), которое вчера было сформулировано очень сумбурно, с исправлениям ошибок на ходу :roll:

-- 22.05.2022, 21:54 --

Очередная опечатка :roll:
EUgeneUS в сообщении #1555199 писал(а):
7. Далее рассматривается уравнение
$2^{q-1} a^{p-1} b = B^2 - 1$

Читать $2^{q-2} a^{p-1} b = B^2 - 1$ (на одну двойку же сократили...)
Тут $B = \sqrt{n_2/2}$

1. Подставим выражение (2а) $b = \frac{a^{q-1} + 1}{2^{p-4}}$
в уравнение: $2^{q-2} a^{p-1} b = B^2 - 1$

Получим: $(2  a^{p-1})(2  a^{p-1} + 2) = (B - 1)(B+1)$

2. Тогда $2  a^{p-1} = B - 1$

3. Предположим, что $n \ne 1$ - некий общий делитель чисел $(p-1)/2$ и $(p-1)/2$, тогда
$B = C^n$, где $C$ - некое целое число. Это обеспечивается структурой факторизации $n_2$ (там два варианта и оба обеспечивают).

4. Тогда $2  a^{p-1} = (C - 1) (C^{n-1} + .. + 1)$

5. $(C - 1)$ - четно. Также если $n$ - чётно, то и $(C^{n-1} + .. + 1)$ - чётно. Противоречие с левой частью.
Таким образом, запрещены все чётные общие делители чисел $(p-1)/2$ и $(p-1)/2$
В том числе и двойка. Что запрещает $gcd ((p-1), (p-1)) = 4$

6. Остаётся только вариант $n=3$ ($gcd ((p-1)/2, (p-1)/2)=3$)
Так как $gcd ((p-1), (p-1)) > 4$ были исключены в работе Владимира и Василия Дзюбенко.

-- 22.05.2022, 22:17 --

7. Так как $C-1$ и $C^2 + C + 1$ - взаимно простые, то
$C-1 = 2$ и $C=3$,

8. Тогда $\sqrt[3]{B} = 3$,

Это запрещает $B = c^{(p-1)/2} d^{(q-1)/2}$

9. А для варианта: $B = c^{(pq-1)/2}$ даёт: $3=3^{(pq-1)/6}$

10. Откуда $pq = 7$, что противоречит принятым для $p, q$ ограничениям.

Вроде бы всё.
У меня есть некоторые сомнения в верности выделенного болдом выше.

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 22:32 
EUgeneUS в сообщении #1555203 писал(а):
7. Так как $C-1$ и $C^2 + C + 1$ - взаимно простые, то
Волmфрамальфа говорит $(C^2+C+1)/(C-1)$ может быть равно $7$, т.е. не обязательно взаимно просты. Правда подходят ли $C=2, C=4$ надо проверить.

-- 22.05.2022, 22:43 --

Dmitriy40 в сообщении #1555206 писал(а):
Правда подходят ли $C=2, C=4$ надо проверить.
Не подходят, $C$ должно быть нечётным.
Значит эти выражения несократимы (взаимно простые) в рамках принятых ограничений.

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 23:09 
EUgeneUS в сообщении #1555203 писал(а):
7. Так как $C-1$ и $C^2 + C + 1$ - взаимно простые, то

Это не совсем верно. Правильно так: $c-1$ и $c^2+c+1$ либо взаимнопросты, либо (когда $c \equiv 1 \pmod{3}$) их НОД равен 3.

-- 22.05.2022, 23:14 --

Ещё кое-что заметил.

EUgeneUS в сообщении #1555203 писал(а):
1. Подставим выражение (2а) $b = \frac{a^{q-1} + 1}{2^{p-4}}$
в уравнение: $2^{q-2} a^{p-1} b = B^2 - 1$


По модулю 4 получаем, что $b$ не может быть целым при $p > 5$.

 
 
 
 Re: Пентадекатлон мечты
Сообщение22.05.2022, 23:17 
Аватара пользователя
Dmitriy40 в сообщении #1555206 писал(а):
Значит эти выражения несократимы (взаимно простые) в рамках принятых ограничений.


Скорее, "в рамках сделанных ранее выводов". Мы же двойки расставляли явно, а потом сокращали. Все оставшиеся неизвестные - нечётны.

mathematician123 в сообщении #1555208 писал(а):
Это не совсем верно.

Спасибо!
Опять двойка дырка. Надо посмотреть, к чему ведет
mathematician123 в сообщении #1555208 писал(а):
(когда $c \equiv 1 \pmod{3}$) их НОД равен 3.


UPD: Если их НОД равен 3, то $a=3$, так как $a$ - простое.
Тогда $C^2 + C +1$ должно равняться некой степени тройки, что невозможно для целого $C > 1$.

-- 22.05.2022, 23:56 --

mathematician123 в сообщении #1555208 писал(а):
EUgeneUS в сообщении #1555203

писал(а):
1. Подставим выражение (2а) $b = \frac{a^{q-1} + 1}{2^{p-4}}$
в уравнение: $2^{q-2} a^{p-1} b = B^2 - 1$

По модулю 4 получаем, что $b$ не может быть целым при $p > 5$.


Вот жеж :facepalm:
Я же делал ранее такой вывод, но что-то запаниковал и засомневался :facepalm: :facepalm:
Очень хорошо, что этот случай закрылся. Так для него у меня не было конечного перебора для проверки, когда $gcd((p-1)/2, (q-1)/2) = 1$

Впрочем, он не полностью закрылся, так как остаются варианты $p=5$, а $q$ - произвольное.

-- 23.05.2022, 00:07 --

Промежуточные итоги (если ещё дырок не найдется):

1. Для $p, q > 5$
а) Доказано, что $M(2pq) \le 3$, если $gcd(p-1, q-1) > 2$
б) Проверку конечным перебором (для заданных значений $p,q$), что $M(2pq) \le 3$, если $gcd(p-1, q-1) = 2$

2. Для $p=5, q > 5$
а) Доказано, что $M(2pq) \le 3$, если $gcd(p-1, q-1) > 2$
б) Отсутствие проверки конечным перебором, что $M(2pq) \le 3$, если $gcd(p-1, q-1) = 2$

 
 
 
 Re: Пентадекатлон мечты
Сообщение23.05.2022, 01:21 
Очередной раз увяз :facepalm:
И очередной раз вернулся к истокам, перелопатил последние страницы и не нашел доказательства $M(70\le 3$ :-(
Какие-то куски имеются. Но собранного воедино не нашел.
Например, не обнаружил, где отвергается этот случай б) $3^4 b^6 = 2^5 q^4 (8q^4 -1) +1$, при этом $p = 8 q^4 - 1$

Плохо искал?

 
 
 
 Re: Пентадекатлон мечты
Сообщение23.05.2022, 01:58 
VAL в сообщении #1555213 писал(а):
Например, не обнаружил, где отвергается этот случай б) $3^4 b^6 = 2^5 q^4 (8q^4 -1) +1$, при этом $p = 8 q^4 - 1$

Плохо искал?
Тут:
EUgeneUS в сообщении #1554905 писал(а):
Если "первый" - это 4б, то он запрещается в целых числах по модулю 7, вроде как. (как раз шестая степень нечетного и не получится).
Dmitriy40 в сообщении #1554906 писал(а):
Как видно решение может быть только при $b=0\pmod7, q=\{3,4\}\pmod7$. Но видимо таки может быть ... Если не учитывать прочие ограничения на $b$ и $q$ и $p=8q^4-1$.
EUgeneUS в сообщении #1554907 писал(а):
Так $b$ у нас простое. А значит из $b=0\pmod7$ следует, что $b=7$. Что проверяется однократной проверкой, а не перебором.

 
 
 
 Re: Пентадекатлон мечты
Сообщение23.05.2022, 02:05 
Аватара пользователя
Ага, пока писал, уважаемый Dmitriy40 уже ответил.

FGJ, эту проверку (подставить $b=7$ и убедиться, что не нашлось $q$) никто не сделал :roll:
UPD: Проверил только что. Всё ОК, $q$ не нашлось. Но лучше перепроверить.

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 59, 60, 61, 62, 63, 64, 65 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group