Как пример, приведу ролик:
https://www.youtube.com/watch?v=EYsr0DZWMCg. Там в первые несколько минут идут рассуждения про этажи в математике. Это точка зрения сугубо точка зрения автора ролика или она более-менее распространена?
Интересное видео. Эта теория об этажах перекликается с тем, что я писал об аналогии между последовательностью изучения математики в вузе и её историческом развитии:
в своем математическом развитии человек обязательно должен пройти все этапы, которые прошла математика в своем развитии. И если греческую математику в основном проходят в школе, то на первом курсе проходят, грубо говоря, математику 16-17, в частности аналитическую геометрию. И перескочить этот этап никак нельзя. Если его не будет в программе, человек будет изучать это самостоятельно.
Посмотрев монолог Саватеева, я начал рассуждать, какие математические предметы в вузе можно отнести к тому или иному уровню математики. А также какой исторический период в развитии математики этому уровню соотвествует. Получилось примерно такая классификация:
второй уровень (согласно Саватееву его достигает выпускник средней школы) -- уровень школьной алгебры -- манипуляция с буквенными выражениями, в которых буквы обозначают числа. Это примерно уровень поздней греческой математики (Диофант), арабской математики (Омар Хаям, Аль Хорезми), европейской математики до 16 века (Кардано, Виет);
третий уровень -- уровень манипуляции с произвольными объектами, которые имеют наглядный смысл -- линейная алгебра, аналитическая геометрия, почти весь математический анализ (кроме основ теории метрических пространств), дифференциальная геометрия кривых и поверхностей в трёхмерном пространстве, обыкновенные дифференциальные уравнения, дифференциальные уравнения с частными производными (пока там не начинает применяться функан), теория функций комплексного переменного (хотя она уже приближается к четвертому уровню, наглядности там поменьше, график функции не представить), теория меры и интеграла Лебега и вообще, то, что называется ТФДП (тоже приближается к четвертому уровню, так как активно использует теорию множеств) . Исторически тут очень большой период -- 17, 18, 19 век, даже начало 20 века (интеграл Лебега). Можно мне возразить, что линейная алгебра или математический анализ в
не наглядны. Тут дело вот в чем: почти ничего не меняется, если излагать все для
, все легко переносится на произвольную размерность. Во многих учебниках матанализа так и делают -- ограничиваются трёхмерным случаем. То же касается и абстрактной теории меры. Формально она строится в произвольном пространстве (конструкция продолжения меры по Лебегу с полукольца), но достаточно представлять себя, что это полукольцо прямоугольников на плоскости, все рассуждения сохраняются. Но, например, теорему Радона-Никодима я уже целиком отнесу к четвертому уровню, так как там по сравниваются различные меры на сигма-алгебре, это уже не наглядно.
четвертый уровень -- уровень манипуляций с произвольными объектами, которые уже не наглядны в силу своей слишком большой общности, либо по какой-то другой причине -- функциональный анализ, абстрактная алгебра (группы, кольца, поля), теория множеств (мощности, ординалы, трансфинитная индукция), общая топология (здесь в отличие от теории меры нельзя ограничиться множествами в
, так как для них многие понятия общей топологии просто теряют смысл, например, все аксиомы отделимости), алгебраическая топология (кроме наглядной топологии двухмерных поверхностей, которую можно отнести к третьем уровню, но её слишком мало, чтобы изучать как отдельный предмет), дифференциальная геометрия на многообразиях (тензорный анализ, риманова геометрия), случайные процессы, и вообще теория вероятностей, излагаемая на современном уровне (много пересечений с функаном). Исторически это 19 век (в части алгебры) и первая половина 20 века. И сейчас еще на этом уровне продолжаются научные исследования.
пятый уровень. Вот тут я не могу даже сформулировать, что он из себя представляет. Возможно, потому что сам его не достиг. По крайней мере ни один из стандартных вузовских учебных курсов к этому уровню не относится, только различные спец.курсы, спец.семинары. Могу предположить, что на этом уровне изучаются взаимосвязи между различными объектам четвертого уровня. Наверное, к этому уровню можно отнести теорию категорий. Или какую-нибудь теорию универсальных алгебр. Наверняка и в функане этот уровень есть. Есть же всякие "когомологии банаховых пространств". В общем, пусть, более сведущие в современной математике люди напишут, что можно отнести к этому уровню и как его охарактеризовать. Исторически пятый уровень -- это вторая половина 20 века и первая половина 21 века. Вообще, это уровень современной математики.
Шестого уровня, думаю, еще не существует (возможно, более сведущие в математике люди считают иначе). Но со временем появится и шестой уровень.
Также было бы интересно проследить, есть ли подобные уровни в физике, и как они связаны с уровнями в математике. Возьмём, например, специальную теорию относительности. Математический аппарат относится к третьему уровню, но думаю, физическая теория относится к четвертому уровню, потому что нет наглядности. В ОТО уже и математический аппарат относится к четвертому уровню.
Также я подумал, что наличие этих уровней в математике влечет важные выводы в педагогической теории и практике. Целью математического образования должно быть помочь студенту перейти на следующий уровень. Если уровень взят, то нет смысла на нем долго сидеть. Например, если на первом курсе студент уже достаточно освоился на третьем уровне (в курсах матанализа и линейной алгебры), то на втором курсе в дифференциальной геометрии нет смысла много времени разбирать кривые и поверхности в трёхмерном пространстве, а лучше сразу переходить к римановой геометрии или тензорному анализу, в общем к дифференциальной геометрии в современном смысле слова. Для человека, взявшего барьер четвертого уровня, не составит труда по учебникам самостоятельно освоить любую часть математики более низкого третьего уровня. Но и слишком рано нельзя переходить на четвертый уровень, потому что тогда студент просто ничего не поймет, или поймет формально, а потом забудет.