2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4
 
 Re: Эластичность спроса
Сообщение21.07.2020, 19:03 
EUgeneUS
Да, я использовал выражение аналитическая модель один раз (в значении выведенная упрощенная аналитически выраженная формула, готовая к использованию в практике).
Т.е. как частный (аналитический) случай того значения, в котором это слово употребляется в data science в словосочетаниях "build a model" и "deploy a model".
Но акцент у меня в посте был сделан на аналитических решениях/вычислениях.
А модель нужна, иначе чего собственно численно решать. Но говоря о такой модели (модели реальности, модели ситуации), я бы не стал её сразу называть аналитической. Я бы её назвал просто моделью ситуации. Но это вопрос терминологии.

 
 
 
 Re: Эластичность спроса
Сообщение22.07.2020, 06:58 
Аватара пользователя
ipgmvq
Спасибо за пояснения.
Сначала по терминологии.
Модель реальных объектов и систем в виде уравнений и неравенств мне привычно называть аналитической моделью. В противоположность моделям, которые возникают в результате анализа данных.
В этой терминологии Вы ратуете
а) за сложные аналитические модели - описывающие максимальное число объектов и связей между ними. Против упрощенных моделей с гораздо меньшим числом объектов и связей.
б) за решение их численными методами. Против поиска упрощенных, приближенных аналитических решений.
Я правильно Вас понял?

Если да, то откуда Вы берете уравнения для описания объектов и связей между ними?
Приведу аналогию. Мы хотим описать поведение некой сложной электронной схемы. Для этого нам нужно:
1. Правила Кирхгофа.
2. Параметры элементов, входящих в схему - модели элементов.
После чего задача решается численно.

Как видим,
1. Нужна собственно модель, описывающая связи между элементами (правила Кирхгофа).
2. Нужны параметры элементов\объектов.
а где всё это взять для экономических моделей?
3. И всё равно наше решение будет всего лишь приближением, как бы точно мы не считали численными методами, так как и правила Кирхгофа, и параметры элементов - это приближения, описывающие реальные объекты и взаимодействие между ними.

 
 
 
 Re: Эластичность спроса
Сообщение22.07.2020, 08:38 
EUgeneUS
По (а) я не соглашусь с этим конкретным описанием того, что Вы понимаете под аналитической моделью, поэтому (а) подтвердить не могу. Поясню ниже. По (б): Вы очевидно пытаетесь сконтрастировать это утверждение с выводом (3) в самом низу. Я отвечаю, что контраст не в том, что численные точны, а аналитические нет, а в том, что численные неточны, а аналитические бывают очень-очень-очень неточны, потому что, как только Вы начинаете изначальную модель плотнее приближать к реальности (устраняя наложенные ограничения), Вы теряете возможность решить задачу аналитически.

я не хочу делать глупых заключений о сложной электронной схеме, ибо не electrical engineer — обойдусь с Вашей аналогией в рамках своего разумения. :-)
Человек (и социум) в плане здоровья и поведения существенно более сложная и менее детерминированная система, чем самая сложная созданная человеком электронная схема.
Даже если мы опишем поведение социума системой уравнений (в т.ч. диффур) и неравенств, они будут заполнены случайными величинами (некоторые смоделированные известными параметрическими распределениями, некоторые нет). Эти случайные величины будут описывать как эффекты/поведение, которое нас в этот момент интересует как исследователей, так и огромную часть неопределенности, которую можно назвать "шумом". Если при неточном решении по электронной схеме детерминированности будет, к примеру, 95%, а неопределенности (ошибок предсказаний модели) 5%, то для модели социума, характерно наоборот.
В зависимости от исследования эмпирические данные для решения вы получаете либо в результате собственного эксперимента, либо вы наблюдаете за данными, которые собирает 3-я сторона, и Ваше исследование является обсервационным.
Приведу аналогию.
Представьте, что Вы работаете на компанию Coca-Cola и работаете с брендом Coca-Cola. Вряд ли у кого-то есть сомнения, что структура рынка продуктов под этим брендом (обычной Колы, zero, вишневой и других) — монополистическая конкуренция. Продукты не идентичен между собой, альтернативам других брендов от той же компании, и альтернативам от других производителей, ни обычной бесплатной водопроводной и колодезной воде. Если взять каждого отдельного потребителя, то все эти альтернативы для конкретного use case (например, запивать "второе" на обеде во время рабочего дня) с точки зрения предпочтений являются упорядоченным множеством. Порядок разный у разных потребителей. Но этот порядок ведь и у одного и того же потребителя тоже не является константой. Он может зависеть от времени года, погоды на улице, с кем сегодня из своих коллег данный работник пошёл на обед, а также иметь сложную зависимость от того, что он выбирал из альтернатив на прошлых обедах (последнее в свою очередь зависит от (случайных) вариаций ассортимента столовой/fastfood/кафе/ресторана).
И представьте, что на фоне этих вероятностных усложнений, Вы хотите оценить cardinal utility function, но не через опросники, а эмпирически, давая рандомные (и непредсказуемые) по дням скидки на отдельные SKU своего ассортимента в (максимально) случайных сетевых столовых/fastfood/кафе/ресторанах и регистрируя реальный спрос (на основании контрактов с этими сетями).
Цель — оптимизировать цену на каждый SKU в каждый сезон для максимизации консолидированного free cashflow по России.

 
 
 [ Сообщений: 48 ]  На страницу Пред.  1, 2, 3, 4


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group