Содержание предыдущей серии см.
здесь
Попытка играть втёмную провалилась, что впрочем неудивительно - на всяк роток не накинешь платок. Поначалу мы не видели другой возможности для начала дискуссии по существу, кроме как сначала сформулировать внятную формулировку. Вот мы и попробовали. Формулировка естественно получилась такая, что для опровержения достаточно ткнуть наугад - на это я даже намекал, выделяя приставку
не в слове несуществование.
Яркин дал лишь частичное согласие на такую формулировку и мы ждали лишь подтверждения его согласия на её обсуждение. Ну а дальше случилось то, чего и не могло не случиться.
Другой редакции теоремы оппоненты предложить не могут - фантазии не хватает. Но ведь её нет и у Яркина. Что тогда обсуждать, если нет формулировки? Тупичок вот такой образовался.
Однако оно и к лучшему. Лучше оппонентам признаться хотя и в вынужденном, но всё-таки в несостоявшемся коварстве, подсунувших Яркину заведомо ложную лемму, чем ловить его там, где не поймает только ленивый.
Мы вот тут посоветовались с
AD и порешили играть в открытую не против Яркина, а вместе с Яркиным. Не будем требовать от него сразу ясной формулировки, а обсуждать будем доказательство - оно ведь всегда информативнее формулировки, вне зависимости, верное оно или ошибочное. Точнее - это, конечно, будет уже не доказательство, а некоторые рассуждения о чём-то. Вот отсюда и можно попытаться выловить, о чём это рассуждение, верное ли оно, а также как разные фрагменты рассуждения друг с другом стыкуются и во что складываются. В общем, как у классика детской литературы:
Писать я начинаю
В башке бедлам и шум
О чём писать не знаю,
Но всё же напишу.
Вот почти дословно по Яркину:
================================================================
Пусть для некоторых положительных действительных чисел
и некоторого натурального
выполняется соотношение
Положим
В новых обозначениях соотношение (1) приобретёт вид:
==================================================================
Вот это мы можем принять, а дальше уже непонятно
Цитата:
Соотношение (3) получается из соотношений теоремы косинусов для треугольника со сторонами
Согласно описанию соотношение (3) получилось совсем другим путём - не было там и в помине никаких треугольников.
Может быть так: Рассмотрим треугольник с длинами сторон ... ? Но для этого сначала надо бы убедиться, что такой треугольник существует ..., а если существует, то какой он? Не того ли он вида, против которого Вы всегда выступали?
В общем, у меня пара вопросов:
1. Принимаете ли Вы такой план действий?
2. Согласны ли с принятым фрагментом?
В положительном случае можете предложить продолжение, только не торопитесь, п о м е д л е н н е е - очень сомнительно, что оппоненты смогут принять больше двух предложений, так что право же не стоит тратить порох впустую.