2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6
 
 Re: Математика для взрослого обывателя
Сообщение05.07.2019, 13:11 
fred1996 в сообщении #1403221 писал(а):
Как только он остановился в своем развитии, он превратился в инженера...

(Оффтоп)

Абидна сказал, слюшай...

Учёные сделали бомбу. Инженеры вывели человечество в Космос.

 
 
 
 Re: Математика для взрослого обывателя
Сообщение05.07.2019, 13:22 
Аватара пользователя
Громко сказано, только неправда.

 
 
 
 Re: Математика для взрослого обывателя
Сообщение06.07.2019, 03:37 
fred1996 в сообщении #1403221 писал(а):
А потом поймете, что это даже не окружность, а экспонента.
Ну как сказать. Косинус и синус — это способ разобраться в $\mathrm{SO}(2)$ или, эквивалентно, в $\mathrm{U}(1)$. Экспонента близко ко второму, но не обязательна.

 
 
 
 Re: Математика для взрослого обывателя
Сообщение02.08.2019, 21:18 
Друзья, объясните пожалуйста простым языком, что такое $\frac{dx}{dy}, \frac{dx}{dt}$. Вот $\frac{a}{b}$ понятно, некое множество или переменная относится к другому множеству или переменной. А что относится к чему в первом случае? Одна скорость изменения функции к скорости изменения другой функции? В чем геометрический смысл, как это понять в простых терминах?

 
 
 
 Re: Математика для взрослого обывателя
Сообщение02.08.2019, 21:57 
Аватара пользователя
maxcho в сообщении #1408370 писал(а):
Вот $\frac{a}{b}$ понятно, некое множество или переменная относится к другому множеству или переменной
А как оно к ним относится?

(Оффтоп)

Любит ли Слонопотам поросят или нет? И как он их любит?

 
 
 
 Re: Математика для взрослого обывателя
Сообщение03.08.2019, 00:24 
 i  Обсуждение приоритета арифметических операций отделено в тему «Математика для взрослого третьеклассника»

 
 
 
 Re: Математика для взрослого обывателя
Сообщение03.08.2019, 05:13 
Guvertod в сообщении #1408378 писал(а):
maxcho
Вот я пытался расписать про дифференциал в сообщении #1338976, возможно, что-то прояснится.
Если есть что поправить математикам, поправьте, пожалуйста.

Да! Это абсолютно то, что мне нужно. Мне как раз нужно общее понимание дифференциала применительно к физическим величинам. И вот объяснение с «предельно приближенной точностью измерения» мне вроде бы понятно. То есть, правильно ли я понимаю, что если мне нужно измерить некий очень маленький промежуток, например, мгновенную скорость тела в некой точке, мы используем дифференциал как инструмент?

 
 
 [ Сообщений: 82 ]  На страницу Пред.  1, 2, 3, 4, 5, 6


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group