на сколько треугольников вы разбивали фигуру, которую я вам предложил? И можно ли их увидеть?
Сколько сторон у фигуры на столько треугольников она и разбивается. В Вашем примере 12 сторон, значит на 12 треугольников. Здесь удобно было то, что последовательность вершин была задана по периметру, поэтому мне не пришлось расставлять вершины по порядку. Т.е. стороны были заданы соответственно вершинами: 1-2, 2-3, 3-4, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12 и 12-1. Что бы определить знаки треугольников, можно сделать эскиз и тогда придётся таки узреть звезду Давида. Но я же написал функцию, которая вычисляет знак треугольника в произвольном случае. И тут важно, чтобы вершины были заданы в правильной последовательности. Суть того, как работает эта функция можно понять и на примере приведённого рис.6.
надо понимать не как "формула для поля треугольника", а как "формула для поля треугольника над его вершиной"
Верное замечание-уточнение.
Была даже надежда получить число в аналитическом виде, через радикалы или в худшем случае через арктангенсы.
Так по сути эти формулы и дают значение поля в аналитическом виде, только очень грамоздко, но в маткаде выглядит сносно. Надеюсь, для звезды Давида ничего там божественным образом не упрощается... Суть то в том, что случай может быть произвольный, а кирпичом является формула для поля прямоугольного треугольника над его вершиной.