2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 10:55 


08/05/14
7
Добрый день, столкнулся с тем, что определение минора матрицы в интернете и учебниках дается без объяснения его смысла. Мол берете матрицу, вычеркиваете столбцы и ряды и, вуаля, вы получите минор. Может я просто плохо соображаю, но есть ли литература, где подробно дается информация, что это за понятие и как оно взялось. Находил курс на mit от Гильберта Стренга, но он так же не дает объяснения, только приводит определение. Я хотел бы разобраться в этом вопросе, т.к. без понимания что такое минор я не могу разобраться в доказательстве критерия Сильвестра. Заранее большое спасибо!

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 11:44 
Заслуженный участник


16/02/13
4179
Владивосток
Вам кажется. В математических определениях вообще нет никакого глубинного (а также сермяжного, посконного, домотканого и кондового) смысла. Они вводятся исключительно для удобства дальнейшего изложения и ни для чего боле. Аналогично и с физическим смыслом. Производная, к примеру, — она и есть производная. Часто говорят, что физический её смысл — скорость, но и это, по-моему, неверно. Скорость есть производная радиус-вектора, да. Но никакого физического смысла производная не несёт. Хотя и применяется в физике весьма широко.

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 11:44 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва
Минор матрицы — это любой определитель, который можно получить из матрицы, вычёркивая из неё некоторое количество строк и столбцов ($\geqslant 0$) так, чтобы оставшаяся матрица была квадратной. Больше никакого сокровенного знания за этим не стоит. Появились они как техническое средство и таковым и служат с тех пор. В некоторых случаях некоторым минорам можно придать некоторый смысл, но его поиски ради поиска, скорее всего, Вам ничем не помогут, а только уведут в сторону от основного вопроса: научиться пользоваться минорами.
Появляются они совершенно естественно из формулы для вычисления определителей. Например, для определителя третьего порядка: $$\begin{vmatrix}a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33}\end{vmatrix}=a_{11}a_{22}a_{33}-a_{11}a_{31}a_{23}-a_{21}a_{12}a_{33}+a_{21}a_{32}a_{13}+a_{31}a_{12}a_{23}-a_{31}a_{22}a_{13}=$$ $$=a_{11}(a_{22}a_{33}-a_{31}a_{23})-a_{21}(a_{12}a_{33}-a_{32}a_{13})+a_{31}(a_{12}a_{23}-a_{22}a_{13})=$$ $$=a_{11}\begin{vmatrix}a_{22}&a_{23}\\ a_{32}&a_{33}\end{vmatrix}-a_{21}\begin{vmatrix}a_{12}&a_{13}\\ a_{32}&a_{33}\end{vmatrix}+a_{31}\begin{vmatrix}a_{12}&a_{13}\\ a_{22}&a_{23}\end{vmatrix}=a_{11}M_{11}-a_{21}M_{21}+a_{31}M_{31}.$$ Что касается критерия Сильвестра, то там диагональные миноры очевидным образом связаны с квадратичными формами, которые получаются из заданной квадратичной формы, если в ней часть переменных заменить нулями.

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 11:55 
Заслуженный участник


18/01/15
3221
С тем, что у математических определений вообще нет никакого сермяжного смысла, я не согласен. Смысл есть весьма часто. Но вот в данном случае действительно лучше всего относиться к минору, как к чисто формальной находке, сделанной великими умами прошлого и оказавшейся очень удобной в разных отношениях. Хотя в каких-то ситуациях минор имеет конкретный геометрический смысл. Но понять доказательство критерия Сильвестра --- не та ситуация.

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 12:24 
Заслуженный участник


16/02/13
4179
Владивосток
vpb в сообщении #1385017 писал(а):
я не согласен
Дык, наверное, у вас есть секретный пример такого определения?

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 12:28 
Заслуженный участник
Аватара пользователя


26/01/14
4834
iifat в сообщении #1385019 писал(а):
Дык, наверное, у вас есть секретный пример такого определения?
Та же производная - это действительно скорость.
Производная любой величины по времени - мгновенная скорость изменения этой величины.
Производная любой величины по любой другой величине - это скорость (мгновенная), с которой будет изменяться первая величина, если вторую величину изменять с единичной скоростью.

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 13:58 
Заслуженный участник


16/02/13
4179
Владивосток

(Оффтоп)

Mikhail_K в сообщении #1385020 писал(а):
Производная любой величины по времени - мгновенная скорость изменения этой величины
Пожалуй, это уже оффтоп, но вы действительно полагаете, что в этой фразе таки есть смысл — помимо воспроизведения определения производной на уровне размахивания руками?
Mikhail_K в сообщении #1385020 писал(а):
производная - это действительно скорость
Скорость — вполне себе определённое физическое понятие. Та скорость, о которой вы говорите ниже есть нечто, имхо, совершенно нефизическое, так что такой «физический смысл» только мешает пониманию как физики, так и математики, не?

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 14:42 
Заслуженный участник
Аватара пользователя


26/01/14
4834

(Оффтоп)

iifat в сообщении #1385034 писал(а):
но вы действительно полагаете, что в этой фразе таки есть смысл — помимо воспроизведения определения производной на уровне размахивания руками?
Конечно нет. То что я написал - это именно воспроизведение определения производной на уровне размахивания руками. Но я действительно полагаю, что для понимания многих математических понятий необходимо иметь в голове не только их строгое определение, но и интуитивное, на уровне размахивания руками. На всякий случай уточню: может быть, это необходимо не всем, но многим это необходимо. Поэтому вопрос "а какой у этого понятия интуитивный смысл, как его себе образно представить?" - имеет право на существование (хотя не всегда на него имеется удовлетворительный ответ).

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 17:15 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Если матрица выражает линейное отображение одного линейного пространства на другое линейное пространство, то минор - это "часть" этого отображения, связанная с подпространством в области отправления и с подпространством в области прибытия.

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 19:52 
Заслуженный участник


14/10/14
1220
1. Пусть $V$ -- векторное пространство с симметричною билинейною формою $B$. Она индуцирует симметричную билинейную форму $\Lambda^k B$ на $\Lambda^k V$ следующим образом: $$\Lambda^k B\,(u_1\wedge ... \wedge u_k,\, v_1\wedge ... \wedge v_k)=\det
\begin{pmatrix}
B(u_1,v_1) & \dots & B(u_1,v_k)\\
\vdots & \ddots & \vdots\\
B(u_k,v_1) & \dots & B(u_k,v_k)\\
\end{pmatrix}.$$

(Оффтоп)

Можно сказать и иначе. Симметричная билинейная форма $B$ задаёт линейное отображение $\widetilde B:V\to V^*$, которое вектору $v$ сопоставлят линейный функционал $B(v,\cdot)$. С его помощью можно эквивалентно определить $\Lambda^k B\,(u_1\wedge ... \wedge u_k,\, v_1\wedge ... \wedge v_k)$ $= \widetilde B(u_1)\wedge...\wedge\widetilde B(u_k)\; (v_1\otimes...\otimes v_k)$ $= \widetilde B(u_1)\otimes...\otimes\widetilde B(u_k)\; (v_1\wedge...\wedge v_k)$.

Здесь я имею в виду, что элемент $\alpha_1\wedge ... \wedge \alpha_k\in\Lambda^kV^*$ отождествляется с тензором $\sum\limits_{\sigma\in S_n}(-1)^\sigma \alpha_{\sigma(1)}\otimes ... \otimes \alpha_{\sigma(n)}\in\bigotimes^kV^*$. В частности, $\alpha\wedge \beta=\alpha\otimes \beta-\beta\otimes \alpha$.

Осторожно! Некоторые выбирют другое отождествление, деля ещё на $k!$, то есть у них получается $\alpha\wedge \beta=\frac12(\alpha\otimes \beta-\beta\otimes \alpha)$.

Определение, приведённое снаружи блока оффтопика, не зависит ни от каких таких отождествлений.

2. Пусть $v_1,...,v_k$ -- векторы из $V$. Можно сопоставить им число $\mathrm{Gr}(v_1,...,v_k):=\Lambda^kB(v_1\wedge...\wedge v_k,v_1\wedge...\wedge v_k)$. Это число называется определителем Грама векторов $v_1,...,v_k$ (от упорядочения оно, очевидно, не зависит).

Если $B$ -- евклидово скалярное произведение, то определитель Грама есть просто квадрат ($k$-мерного!) объёма параллелепипеда, натянутого на векторы $v_1,...,v_k$.

3. Пусть $e_1,...,e_d$ -- базис $V$, $B_e$ -- матрица нашей формы $B$ относительно этого базиса. Выберем набор индексов $i_1<...<i_k$. Тогда $\mathrm{Gr}(e_{i_1},...,e_{i_k})$ равен минору матрицы $B_e$, посчитанному по $k\times k$ подматрице, находящейся в строках и столбцах с номерами $i_1,...,i_k$.

4. Наконец про критерий Сильвестра. Пусть $V$ -- вещественное векторное пространство с симметричною билинейною формою $B$; хотим найти сигнатуру её. Выберем базис $e_1,...,e_d$ и положим $\Delta_k:=\mathrm{Gr}(e_1,...,e_k)$ (это как раз и есть $k$-й главный угловой минор). Несложно доказать, что $\Delta_k=0$, если ограниченная форма $B\big|_{\langle e_1, ..., e_k \rangle}$ вырождена, и $\text{знак }\Delta_k=(-1)^{s_k}$, если она невырождена и имеет отрицательный индекс инерции $s_k$ (отрицательный индекс инерции -- это количество минусов в сигнатуре).

Таким образом, если все главные угловые миноры ненулевые, то $\Delta_i$ и $\Delta_{i+1}$ имееют разные знаки $\Leftrightarrow$ $s_{i+1}=s_i+1$. Поэтому в этой ситуации отрицательный индекс инерции всей формы $B$ равен числу перемен знака в последовательности $1, \Delta_1,...,\Delta_d$.

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 20:28 
Заслуженный участник
Аватара пользователя


23/07/08
10887
Crna Gora
Можно ещё указать на связь минора порядка $p$ с ориентированным $p$-мерным объёмом проекции параллелепипеда, построенного на $p$ векторах (объяснить, каких), на соответствующее подпространство (объяснить, какое).

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение31.03.2019, 23:40 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Все забыли самое важное: вычеркивание строк и столбцов - это физический труд, то есть работа. Вот он сокровенный физический смысл минора: чем меньше размер минора по сравнению с размером матрицы, тем бОльшая работа по его добыванию из матрицы производится (придется вычеркнуть много строк и столбцов!).
На этом пути можно даже получить точные количественные соотношения, но это уже будет излишним подсказыванием...

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение01.04.2019, 00:49 
Заслуженный участник
Аватара пользователя


23/07/08
10887
Crna Gora
При малых порядках выгоднее скопировать куда-нибудь только нужные элементы, чем вычёркивать лишние. :wink:

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение01.04.2019, 08:31 
Заслуженный участник
Аватара пользователя


21/12/05
5931
Новосибирск

(Оффтоп)

svv в сообщении #1385159 писал(а):
выгоднее скопировать

Уже экономический смысл пошёл, если юристы будут не против. На очереди химический?

 Профиль  
                  
 
 Re: что такое минор матрицы. Физический смысл
Сообщение01.04.2019, 09:22 
Заслуженный участник
Аватара пользователя


23/08/07
5487
Нов-ск
bot в сообщении #1385197 писал(а):

(Оффтоп)

svv в сообщении #1385159 писал(а):
выгоднее скопировать

Уже экономический смысл пошёл, если юристы будут не против. На очереди химический?

(Оффтоп)

Если из таблицы Менделеева удалить строки и столбцы, то во сне явится химический минор.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 39 ]  На страницу 1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: DariaRychenkova


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group