2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 11  След.
 
 Точное вакуумное решение уравнений ОТО для двух тел
Сообщение19.03.2019, 22:16 
В пустом пространстве находятся два одинаковых сферически симметричных тела каждое массой $m$, неподвижных друг относительно друга. Пространственные координаты центров этих тел в СК $(t, \rho, \varphi, z)$ (цилиндрическая система координат, ось $z$ проходит через центры тел) следующие $(0, 0, z_1)$ и $(0, 0, z_2)$.
Ненулевые компоненты метрического тензора в этой СК следующие:

$g_t_t=-\frac{R_1 R_2}{M (R_1 + R_2) + R_1 R_2}$

$g_z_z=\frac{4 (4 R_1^3 R_2^3 + M (R_1 + R_2)^3 \rho ^2) (R_2^3 (z - z_1) + R_1^3 (z - z_2))^2 (M (R_1 + R_2) + R_1 R_2)}{(2 R_1 R_2 + (R_1 + R_2) \rho ) (2 R_1 R_2 - (R_1 + R_2) \rho ) (R_1 + R_2)^4 R_1^4 R_2^4}$

$g_\rho _\rho = [4 ((M (R_1 + R_2) + R_1 R_2) (R_1 + R_2)^2 R_1^4 R_2^4 + (R_1^2 - R_1 R_2 + R_2^2)^2 M (R_1 + R_2)^3 \rho ^4 - 2 (M (R_1 + R_2)^3 - (R_1^2 - 4 R_1 R_2 + R_2^2) R_1 R_2) (R_1^2 - R_1 R_2 + R_2^2) R_1^2 R_2^2 \rho ^2) (M (R_1 + R_2) + R_1 R_2)]/[(2 R_1 R_2 + (R_1 + R_2) \rho ) (2 R_1 R_2 - (R_1 + R_2) \rho ) (R_1 + R_2)^2 R_1^4 R_2^4]
$


$g_\varphi _\varphi \frac{(M (R_1 + R_2) + R_1 R_2)^2 \rho ^2}{R_1^2 R_2^2}$

$g_z_\rho =g_\rho _z=  -[4 (M (R_1 + R_2)^3 R_1^2 R_2^2 - 3 (R_1 - R_2)^2 R_1^3 R_2^3 - (R_1^2 - R_1 R_2 + R_2^2) M (R_1 + R_2)^3 \rho ^2) (R_2^3 (z - z_1) + R_1^3 (z - z_2)) (M (R_1 + R_2) + R_1 R_2) \rho ]/[(2 R_1 R_2 + (R_1 + R_2) \rho ) (2 R_1 R_2 - (R_1 + R_2) \rho ) (R_1 + R_2)^3 R_1^4 R_2^4]$

где
$M=2m$
$R_1=\sqrt {(z-z_1)^2+\rho ^2}$
$R_2=\sqrt {(z-z_2)^2+\rho ^2}$

Вобщем, так вот.

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение19.03.2019, 22:22 
Аватара пользователя
А почему здесь, а не в Annals of Mathematics? Или на худой конец, в arXiv.

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение19.03.2019, 22:30 
Munin в сообщении #1382990 писал(а):
А почему здесь, а не в Annals of Mathematics? Или на худой конец, в arXiv.

Думаете стоит туда отправить?
Ну решил для начала послушать, что народ по этому поводу скажет... А дальше видно будет...

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение19.03.2019, 23:20 
Аватара пользователя
Это статичная метрика??

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение19.03.2019, 23:30 
Geen в сообщении #1383003 писал(а):
Это статичная метрика??

Ни один из компонентов метрического тензора от времени не зависит.

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение19.03.2019, 23:34 
Аватара пользователя
И как такое возможно?...

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение19.03.2019, 23:55 
Geen в сообщении #1383007 писал(а):
И как такое возможно?...

Если тела неподвижны друг относительно друга, т.е. измерение расстояния между ними постоянно дают один и тот же результат, то вполне можно построить такую систему координат, в которой эти два тела будут покоиться и в которой метрика будет независима от времени. Разве не так?

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение20.03.2019, 00:14 
Аватара пользователя
Построить можно, но ведь ещё нужно чтобы она вакуумная была...

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение20.03.2019, 00:23 
Geen в сообщении #1383016 писал(а):
Построить можно, но ведь ещё нужно чтобы она вакуумная была...

Ничего не понял. Не могли бы Вы расшифровать свою мысль?

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение20.03.2019, 00:25 
Аватара пользователя
monky99 в сообщении #1383019 писал(а):
Geen в сообщении #1383016 писал(а):
Построить можно, но ведь ещё нужно чтобы она вакуумная была...

Ничего не понял. Не могли бы Вы расшифровать свою мысль?

Вы уверены, что тензор Риччи равен нулю для этой метрики?

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение20.03.2019, 00:32 
Аватара пользователя
Мысль простая: может ли Луна висеть над Землёй неподвижно? :-)

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение20.03.2019, 01:05 
Geen в сообщении #1383020 писал(а):
Вы уверены, что тензор Риччи равен нулю для этой метрики?

Это можно проверить прямой подстановкой. Я это проделал.
Каким образом я получил эту метрику. Я рассуждал следующим образом. Если тела неподвижны друг относительно друга, то можно построить СК в которой метрика будет независима от времени. Метрический тензор представляет собой симметричную матрицу. Такую матрицу можно привести к диагональному виду. Т.е. существует преобразование координат которое приводит метрический тензор к диагональному виду. Метрика при этом останется независима от времени.
Следующая метрика
$ds^2=-\frac {1}{1+2M/R}dT^2+(1+2M/R)dR^2+(R+2M)^2d \theta ^2+(R+2M)^2 \sin^2( \theta )d \varphi ^2 $
является решением уравнений Эйнштейна.
Остаётся только выбрать подходящее преобразование координат, чтобы получить более понятную систему. Я выбрал следующие преобразования:
$T=t$, $R=\frac {2R_1R_2}{R_1+R_2}$, $\theta = \arcsin(\frac {\rho}{R})$, $\varphi =\varphi$
А поскольку метрика получена в результате преобразования координат, то она тоже является решением уравнений Эйнштейна. В той области пространства, где тензор энергии-импульса материи нулевой, разумеется.
Так что можно сказать, что уверен.

-- 20.03.2019, 00:13 --

Munin в сообщении #1383021 писал(а):
Мысль простая: может ли Луна висеть над Землёй неподвижно? :-)

Зависит от системы координат, в которой мы это рассматриваем. (Разумеется если пренебречь отличиями орбиты Луны от круговой и тем фактом, что Луна отдаляется от Земли.) :-)
Гораздо интереснее другой вопрос. А требует ли ОТО, чтобы Луна упала на Землю, если она не вращается вокруг Земли (в СК неподвижной относительно далёких звёзд).
Боюсь, что не требует...

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение20.03.2019, 10:51 
Аватара пользователя
monky99 в сообщении #1383029 писал(а):
А поскольку метрика получена в результате преобразования координат

Это мощный приём - в результате замены координат сферически-симметричное ПВ перестаёт быть сферически-симметричным...
monky99 в сообщении #1383029 писал(а):
А требует ли ОТО, чтобы Луна упала на Землю, если она не вращается вокруг Земли (в СК неподвижной относительно далёких звёзд).
Боюсь, что не требует...

Боюсь, что в данном случае "Луны" нет...

-- 20.03.2019, 10:53 --

monky99 в сообщении #1383029 писал(а):
Следующая метрика
$ds^2=-\frac {1}{1+2M/R}dT^2+(1+2M/R)dR^2+(R+2M)^2d \theta ^2+(R+2M)^2 \sin^2( \theta )d \varphi ^2 $
является решением уравнений Эйнштейна

Можно узнать откуда Вы взяли такое решение, и решением каких именно уравнений оно является?

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение20.03.2019, 11:37 
Geen в сообщении #1383061 писал(а):
Можно узнать откуда Вы взяли такое решение, и решением каких именно уравнений оно является?

Метрика Шварцшильда:
$ds^2=-(1-2M/r)dT^2+\frac {1}{1-2M/r}dr^2+r^2d \theta ^2+r^2 \sin^2( \theta )d \varphi ^2 $
Преобразование координат $r=R+2M$ даёт указанную метрику. Надеюсь можно не писать уравнения решением которых является метрика Шварцшильда?
Geen в сообщении #1383061 писал(а):
Это мощный приём - в результате замены координат сферически-симметричное ПВ перестаёт быть сферически-симметричным...

В сферически-симметричном ПВ в сферической СК метрический тензор это диагонального вида матрица. Это да. Но почему Вы решили, что верно и обратное утверждение? Что диагонального вида метрический тензор определяет сферически-симметричное ПВ...

 
 
 
 Re: Точное вакуумное решение уравнений ОТО для двух тел
Сообщение20.03.2019, 11:50 
Аватара пользователя
monky99 в сообщении #1383063 писал(а):
Преобразование координат $r=R+2M$ даёт указанную метрику.

Да, спасибо, протупил я тут.

-- 20.03.2019, 11:52 --

monky99 в сообщении #1383063 писал(а):
Но почему Вы решили, что верно и обратное утверждение?

Я такого "не решал". Но сферическая симметричность это свойство ПВ и оно не может зависеть от выбора СК.

 
 
 [ Сообщений: 165 ]  На страницу 1, 2, 3, 4, 5 ... 11  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group