Итак.
Я предполагаю, что нужным сочетанием карт, с которым описанный расклад оказывается наиболее вероятным, будет составлять 20 бубновых тузов, 30 пиковых и 50 червовых. Находим вероятность Р(А1):
.
Далее - как может меняться состав колоды? Вижу 12 вариантов:
1) б 25, п 25, ч 50
2) б 25, п 30, ч 45
3) б 30, п 25, ч 45
4) б 15, п 35, ч 50
5) б 20, п 35, ч 45
6) б 15, п 40, ч 45
7) б 15, п 30, ч 55
8) б 20, п 25, ч 55
9) б 15, п 25, ч 60
10) б 10, п 35, ч 55
11) б 25, п 20, ч 55
12) б 25, п 35, ч 40
В каждом из этих вариантов представлено только то, как количество разных карт меняется относительно друг друга, это не точные цифры. Однако логично предположить, что если мы увеличили количество бубновых тузов, уменьшили количество пиковых, и после этого вероятность уменьшилась, то это не зависит от того, насколько именно мы увеличили и уменьшили. Т.е., если во всех этих вариантах вероятность выпадения нужного расклада окажется меньше, чем у изначальной колоды, то можно сказать, что именно она даёт наибольшую вероятность.
Вероятности, высчитанные тем же самым способом:
1)
2)
3)
4)
5)
6)
Это только половина представленных вариантов колоды, при этом уже здесь три варианта, у которых вероятность больше изначальной колоды - 3,5 и 6.
Как я понимаю, дальнейший ход решения - досчитывать вероятности этих вариантов до конца и смотреть, в каких случаях вероятность становится больше. А там уже, в зависимости от обстоятельств, решать, как двигаться дальше.