Someone писал(а):
ljubarcev писал(а):
О «последнем» утверждении П. Ферма
...
и 2 (x^n)^2 = s2 .
Но квадрат целого числа не может быть равен двум квадратам
другого целого числа...
А Вам кто-то сказал, что
- целое число, или Вы сами догадались?
Уважаемый Someone! Спасибо за вопрос. Вы почему то обошли стороной мою тему
« О способностях мышления». Надеюсь, что там просто нет сомнительных мест.
Хотя, с другой стороны, ясно, что в наше время рассчитывать на бесплатные положительные отзывы и рецензии наивно, а отрицательных и вовсе не бывает –
кто же станет за них платить! По данной теме позволю себе привести одно время имевшую широкое хождение среди советских изобретателей поговорку « в первый момент ВСЕГДА очевидна глупость автора и его предложения». По сути замечания ответ прост. Мы рассматриваем уравнение в целых числах
a^2 + (b - c)^2 = s^2 и очевидно, что при целых по предположению
a, b, c левая часть равенства - целое число и поэтому правая часть его s^2 будет всегда целым числом. Это известное уравнение Диофанта, от которого и отталкивался Ферма. Вы конечно знаете, что s может быть целым числом, так как все решения в целых числах приведенного уравнения находятся в соответствии с известной теоремой : «любая пара целых взаимно простых чисел даёт решение для целочисленного прямоугольного треугольника Пифагора. В нашем случае решения таковы:
a = 2uv, (c – b) = u^2 – v^2, s = u^2 + v^2 . Вообще говоря, приводимая в литературе формулировка теоремы не точна и она должна звучать так:
любая пара целых взаимно простых чисел даёт одновременно решения для двух целочисленных прямоугольных треугольников Пифагора. Это очевидно из нижеследующего тождества:
(u^2 + v^2)^2 – (u^2 - v^2)^2 = (2uv)^2 = (u^2v^2 +1)^2 – (u^2v^2 - 1)^2
В приведенном в теме доказательстве утверждается всего на всего, что в ЧАСТНОМ случае, когда a = x^k, b = y^k, c = z^k решений в целых числах нет и делается соответствующий вывод.
Формулы выглядят безобразно. У меня всё набрано в Word с помощью
Math2. После вставки из буфера всё искажается и приходится корректировать, используя ^. Как обойти или где прочитать?