2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Я - профи?
Сообщение28.10.2018, 12:49 


16/09/12
7127
realeugene в сообщении #1349697 писал(а):
Неужели, и этот шуточный тест для $N+1$ писал преподаватель МФТИ?


Если честно, то понятия не имею. Я бы предположил, что вряд ли, так как едва ли чем-то подобным стал бы заморачиваться МФТИ как ВУЗ в целом. Максимум, если кто-нибудь из сотрудников в частном порядке.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение28.10.2018, 13:50 
Заслуженный участник
Аватара пользователя


30/01/06
72407
По крайней мере один из вопросов неправильно поставлен (в вопросе спрашивается одно, в вариантах ответов - говорится другое).

 Профиль  
                  
 
 Re: Я - профи?
Сообщение28.10.2018, 16:41 
Аватара пользователя


20/07/18
103
Pphantom

Выложил: topic130656.html

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 09:19 
Заслуженный участник
Аватара пользователя


09/09/14
6328
realeugene в сообщении #1349483 писал(а):
Наткнулся на такой вот шуточный рекламный тест на сайте $N+1$ относительно гравитации плоской Земли
Продолжение банкета там же.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 10:16 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Признание ошибки - это хорошо.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 10:32 


27/08/16
10710
grizzly в сообщении #1350189 писал(а):
Продолжение банкета там же.

Munin в сообщении #1350194 писал(а):
Признание ошибки - это хорошо.

Цитата:
В одном из вопросов требовалось найти, в какой точке земного диска ускорение свободного падения достигает своего минимального значения. К сожалению, тест неправильно отвечал на этот вопрос: он утверждал, что ускорение свободного падения меньше всего на ребре плоской Земли, тогда как в действительности на ребре его модуль максимален.
Но тест отвечал в этом вопросе иное. :mrgreen: Тест задавал вопрос про минимум силы тяжести, но тест отвечал: "Лучше всего стартовать в космос из центральной точки плоской Земли". Что полная правда, так как на ребре гравитационный потенциал максимален, и, если не вникать в возможности двигателя и допустимые траектории, то, стартанув с ребра, нужно затратить минимальную энергию для вывода тела в бесконечность.

Ну и это было не единственное недоразумение с этим тестом.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 11:47 


27/08/16
10710
Афигеть. Они тихо изменили авторский ответ в этом вопросе с "лучше всего стартовать с ребра" на "лучше всего стартовать из центра". Я, когда цитировал их ответ в прошлом посте, даже не заметил.

Итого, у них сейчас три неправильных ответа из семи, плюс диаметр 6000 километров - это диаметр диска, а не радиус, как, казалось бы, должно быть.

Ещё подозреваю, что они и с толщиной промахнулись при наборе статьи (подразумевалось 2.5 километра, а не метра, например), и не конкретизировали, из какого именно металла с какой плотностью сделан их диск.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 12:24 


29/10/18

22

(Оффтоп)

dovlato в сообщении #1349575 писал(а):
Сама по себе плоская Земля меня не смущает.


Похоже "Плоская Земля"-это тонкий намек, на то, что российской науке пора вернуться в средневековье. Ну а всё остальное, в совокупности, по замыслу организаторов, должно говорить о том, что она туда уже вернулась. Иначе это воспринимать сложно.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 12:32 
Заслуженный участник
Аватара пользователя


30/01/06
72407
realeugene в сообщении #1350212 писал(а):
Итого, у них сейчас три неправильных ответа из семи

Перечислите все?

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 12:45 


27/08/16
10710
Munin в сообщении #1350219 писал(а):
Перечислите все?


1. Вопрос 2. Лучше то, что требует меньше энергии. Энергетически выгоднее стартовать с ребра, а не из центра. Если игнорировать возможности двигателя и допустимые траектории. Если их не игнорировать, то нужно задать эти ограничения, и тогда задача станет сложной и интересной, но на теорию управления.

2. Вопрос 4. Для диска из железа (железо домысливаем, в первой задаче просто "металл") с параметрами из задачи 1 (диаметр 6000 километров, толщина 2.5 метра) вторая космическкая скорость в центре равна 7 метров в секунду, что гораздо меньше тепловых скоростей молекул в земной атмосфере. Следовательно, вся атмосфера мгновенно разлетится, а что не разлетится станет настолько холодным, что в нём уже не полетаешь. Авторы утверждают, что полетать на биплане получится в центре.

3. Вопрос 7. Энергетически выгоднее стартовать в направлении центра, ускоряясь в окрестности минимума гравитационного потенциала. Опять же, если игнорировать возможные ограничения двигателя и допустимые траектории. Если их не игнорировать, то нужно задать эти ограничения, и тогда задача станет сложной и интересной, но на теорию управления. Но если даже целью задать минимальное время покидания гравитационного поля планеты, как предлагается в ответах, и двигатель развивает очень большое ускорение, то стартовать нужно скорее всего не по направлению местного отвеса, а по прямой мимо края плоской Земли. Потому что на больших расстояниях гравитационное поле будет сферическим. А локальное направление отвеса большого смысла не имеет.

PS На нормальной Земле ракеты стартуют первоначально в направлении против силы тяжести, думаю, по двум причинам. Потому что так стоят на стартовом столе и чтобы как можно быстрее преодолеть плотные слои атмосферы и начать разгоняться с большими скоростями.

PPS Все неоднозначности в формулировках задач используются против авторов задач. :D

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 17:05 
Заслуженный участник
Аватара пользователя


30/01/06
72407
realeugene в сообщении #1350223 писал(а):
3. Вопрос 7. Энергетически выгоднее стартовать в направлении центра, ускоряясь в окрестности минимума гравитационного потенциала.

Вот это мне непонятно. Если поле потенциально, не всё ли равно, куда двигаться?

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 17:19 


27/08/16
10710
Munin в сообщении #1350290 писал(а):
Вот это мне непонятно. Если поле потенциально, не всё ли равно, куда двигаться?
Полезно ещё минимизировать и энергию выхлопа у ракеты.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 17:26 
Заслуженный участник


05/02/11
1270
Москва
Это понятно именно для ракеты, с её постепенным разгоном. А вот если бы это был выстрел _ тогда да, всё равно. Когда ракета летит к центру, она ускоряется, и как следствие, растёт мощность силы тяги $P=\mathbf f\cdot\mathbf v$.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 17:38 


14/01/11
3088
grizzly в сообщении #1350189 писал(а):
Продолжение банкета там же.

Хм, диск - достаточно симметричная штука. Почему бы не попробовать применить теорему Гаусса? Пусть имеется тонкий ($H<<R$, где $H$ - толщина, $R$ - радиус) однородный диск плотностью $\rho$. Рассмотрим тонкий ($r<<H$, где $r$ - радиус) цилиндр высотой $H$, соосный диску. В силу симметрии потоком вектора напряжённости гравитационного поля через боковую поверхность цилиндра можно пренебречь, а в силу малости его радиуса поле на его основаниях считать постоянным. Тогда модуль напряжённости гравитационного поля вблизи оси на поверхности диска оценивается как $g_c=\frac{4\pi GM}{2\pi r^2}=\frac{4\pi GM}{2\pi r^2}=2\pi\rho G H.$ Теперь аналогичным образом рассмотрим тонкий цилиндр с малым радиусом основания $r_1$ и высотой $2R$ с осью, совпадающей с осью симметрии диска, перпендикулярной его высоте. В силу осевой симметрии диска поток поля через поверхность цилиндра будет опять-таки определяться полем в его основаниях. Таким образом, рассуждая аналогично предыдущему случаю, получим, что модуль напряжённости гравитационного поля вблизи боковой оси симметрии диска равен $g_e=4\pi\rho G R$. Поскольку мы рассматриваем случай, когда $H<<R$, при переходе от середины боковой поверхности диска к ближайшей точке основания картина не претерпит качественных изменений (здесь самое тонкое место в цепочке рассуждений :-) ).
Не годится. Для шара аналогичные рассуждения дают неверный результат. Выходит, потоком через боковую поверхность цилиндра пренебрегать нельзя. Оно и понятно: при стремлении радиуса основания цилиндра $r$ к нулю радиальная составляющая поля убывает как $O(r)$, площадь боковой поверхности как $O(r)$, а площадь оснований как $O(r^2)$, т.е. нельзя утверждать, что при $r \to 0$ весь поток пойдёт через основания.

 Профиль  
                  
 
 Re: Я - профи?
Сообщение30.10.2018, 18:36 
Заслуженный участник
Аватара пользователя


30/01/06
72407
realeugene
dovlato
Спасибо. Красиво. Постараюсь запомнить отличие небесной механики от космонавтики :-)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 32 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group