Это в том смысле, что никак без индукции?
Нет. В конце-концов, есть трансфинитная индукция, которая не ограничена натуральным рядом и даже счётными ординалами.
Типичная ситуация, когда возникает потребность в континуум-гипотезе, выглядит так. Доказательство использует трансфинитную индукцию. На каждом шаге "появляется" некоторое новое множество. Для доказательства теоремы нужно построить континуум таких множеств, однако конструкция, используемая на каждом шаге, работает только для счётного семейства множеств, поэтому её можно "дотянуть" только до первого несчётного ординала. Если континуум-гипотеза верна, то есть,
, то всё в порядке. Если же континуум-гипотеза неверна, то есть,
, то мы до континуума не дойдём.
Конечно, возможны всякие варианты.
-- Вс дек 31, 2017 15:42:30 --Есть статья Яна Мыцельского "Analysis without actual infinity", где он предлагает теорию без аксиомы бесконечности, в которой можно практически развивать матанализ.
Ага. Это
статья 1981 года. Не похоже, что это кого-то вдохновляет.
-- Вс дек 31, 2017 15:54:21 --Истинность континуум-гипотезы меня давно уже не волнует, а вот вопрос "что есть в реальности" меня ещё волнует. Есть ли в природе бесконечность и каким опытом это можно проверить? Есть ли в природе число
и каким опытом это можно проверить? Математика такие вопросы не решает, превратившись в чисто инженерную деятельность (придумывание полезных механизмов).
Математика занимается изучением логических конструкций, а не природы. В природе логических конструкций нет, они есть только в человеческой психике. В частности, и "бесконечность" в любых встречающихся в математике видах, и "число
" — это логические конструкции, и в природе их нет.
Другое дело, что многие логические конструкции используются в качестве моделей различных частей той самой "реальности", о которой Вы говорите.
Я всё это говорю потому, что, на мой взгляд, смешивание "реальности" с её математическими моделями ведёт к путанице и странным заблуждениям.