2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 00:03 
Заслуженный участник
Аватара пользователя


20/08/14
5244
amon в сообщении #1210625 писал(а):
Я, как обычный физик средней руки, вместо того, чтобы придумать что-то новое и абсолютно гениальное, как правило где-то что-то тырю, и приделываю это к другому предмету. Казалось (когда это было...), что математика - золотое дно для такой научной клептомании.
А матфизика? Она вроде бы как раз для этого предназначена.

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 00:27 
Заслуженный участник
Аватара пользователя


04/09/14
2940
ФТИ им. Иоффе СПб
Anton_Peplov в сообщении #1210629 писал(а):
А матфизика? Она вроде бы как раз для этого предназначена.
Угу. Но большая часть потыренного была сделана в 18-19 веках. Относительно недавно пришлось просматривать несколько работ по дифракции и как-то стырить ничего не получается. Результатом работы физика является число, а из современных работ эти самые числа очень тяжко извлекаются, а доказательство коммутативности диаграммы в качестве результата работы теор.физика я с трудом себе представляю. Исключением были работы Людвига Фаддеева, так он жаловался (с долей шутки), что физики его считают математиком, а математики - физиком, и ни те, ни другие за своего не считают.

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 00:35 
Заслуженный участник
Аватара пользователя


20/08/14
5244
Ну то есть уже и матфизика оторвалась от своих ДУЧП и улетела в космос, и нужна математическая, но не настолько физика?

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 01:05 
Заслуженный участник
Аватара пользователя


04/09/14
2940
ФТИ им. Иоффе СПб
Anton_Peplov в сообщении #1210637 писал(а):
матфизика оторвалась от своих ДУЧП и улетела в космос
IMHO, дело в том, что языки физиков и математиков настолько разошлись, что они перестали понимать друг друга и начали вариться в собственном соку. Я с трудом представляю современного корабельного инжинера, и даже теор.физика написавшего статью по математике, хотя относительно недавно Крылов и Фок этим баловались.

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 01:19 
Заслуженный участник
Аватара пользователя


30/01/06
63955
Anton_Peplov в сообщении #1210595 писал(а):
Я всего лишь заметил, что не готов согласиться с утверждением, что понятие группы преобразований дает более удачное, глубокое или какое там еще интуитивное понимание идеи группы, чем знание аксиом группы.

А их кто-то так противопоставлял? Я так понимал, что первое хорошо дополняет второе. И обсуждалось именно это.

-- 19.04.2017 01:20:14 --

amon в сообщении #1210635 писал(а):
а доказательство коммутативности диаграммы в качестве результата работы теор.физика я с трудом себе представляю.

Смотря какой диаграммы, если фейнмановской... :-)

-- 19.04.2017 01:20:49 --

amon в сообщении #1210661 писал(а):
Я с трудом представляю современного корабельного инжинера, и даже теор.физика написавшего статью по математике, хотя относительно недавно Крылов и Фок этим баловались.

Ну почему, а Виттен, скажем?

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 01:32 
Заслуженный участник
Аватара пользователя


20/08/14
5244
Munin в сообщении #1210666 писал(а):
А их кто-то так противопоставлял?
Anton_Peplov в сообщении #1210607 писал(а):
Давайте вспомним, как все начиналось.

Mikhail_K в сообщении #1210505 писал(а):
Это так, и тем не менее толкование групп как групп преобразований формирует гораздо более чёткое интуитивное представление о том, что вообще такое группа, чем перечисление аксиом.
Anton_Peplov в сообщении #1210507 писал(а):
Не знаю. Видимо, у нас с Вами разные интуитивные представления. Впрочем, у меня очень мало опыта общения с группами, если не иметь в виду группы "Сплин" и "Оргия праведников". Возможно, дело в этом.
Munin в сообщении #1210515 писал(а):
Anton_Peplov
Почитайте книжки Вавилова, он как раз старается много примеров приводить.
И все заверте...

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 01:33 
Заслуженный участник
Аватара пользователя


04/09/14
2940
ФТИ им. Иоффе СПб
Munin в сообщении #1210666 писал(а):
Ну почему, а Виттен, скажем?
IMHO, теория струн - это не очень физика (дискутировать отказываюсь категорически, это моё частное мнение, которое ни на чем не основано, с чем я сразу соглашаюсь ;)

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 01:36 
Аватара пользователя


16/03/17
131
Anton_Peplov в сообщении #1210500 писал(а):
Всегда смотрел на это так. Взяли мы простейшие алгебраические свойства сложения и умножения чисел и получили поле. Выкинули из этого поля какие-то свойства и получили целостное кольцо. Выкинули требование об отсутствии делителей нуля и получили кольцо. Выкинули нафиг умножение - получилась абелева группа. Выкинули коммутативность - группа. Выкинули обратные элементы - моноид. Единицу - полугруппа. Наконец, ассоциативность - остался группоид, просто множество с заданной на нем бинарной операцией, какой угодно. И на каждом этапе мы смотрим, какие свойства чисел все еще справедливы, а какие уже нет, какие появились новые возможности, как их классифицировать и т.д. Есть же не только теория групп, но и теория полугрупп, колец, полей и черта в ступе.

А мне, кстати, комфортнее было смотреть на алгебру в обратном порядке :) От n-арной универсальной алгебры в одну сторону (одна операция) к группоиду -> полугруппе -> полугруппе с единицей -> группе -> абелевой группе, и в другую сторону (две операции) к кольцу -> кольцу с единицей -> целостному кольцу -> полю, плюс с ответвлением в модули над кольцами -> векторные пространства. Но это больше относится к общей схеме/картинке понятий и их определений, а не обязательно к порядку изучения и углубления в детали. Например, проще изучать сначала векторные пространства, чем модули над кольцами (хотя и в этом отношении, кажется, есть разные мнения).

Общих мотивировок хватает ИМХО и для абстрактного определения группы, не обязательно сразу смотреть на это как на группу преобразований, тем более последнее все равно потом быстро докажется. Аналогично, например, и с кольцами. Определение простое, особых мотивировок и мучений не требует, но сразу после него надо детально разобраться с кольцами целых чисел и классов вычетов, чтобы сначала добавить мяса на кости и только потом пойти в дальнейшие абстракции. А потом, и часто параллельно, с дальнейшими абстракциями, добавлять еще мяса и примеров: гауссовы числа, многочлены и т.д.

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 01:39 
Заслуженный участник
Аватара пользователя


20/08/14
5244
amon в сообщении #1210661 писал(а):
IMHO, дело в том, что языки физиков и математиков настолько разошлись, что они перестали понимать друг друга и начали вариться в собственном соку.
Как это можно исправить? Писать новые учебники, образовательные программы, создавать специальность "xx.xx.xx Перевод с математического языка на человеческий физический"?

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 01:49 
Заслуженный участник
Аватара пользователя


04/09/14
2940
ФТИ им. Иоффе СПб
Anton_Peplov в сообщении #1210672 писал(а):
Как это можно исправить?
А чёрт его знает. Знал бы - написал бы то ли учебник по физике для математиков, то ли наоборот. Тут беда ещё в том, что образовательные программы физиков и математиков расходятся с устрашающей скоростью. На матмехе Питерского университета упразднили практически всю физику, видимо, что бы не испортить математиков физическим подходом к проблемам, а может просто по дури. Мест, где собираются противоборствующие стороны что бы обсудить что и как можно потырить друг у друга, кроме как за чашкой водки в общей компании, тоже практически не осталось. IMHO, в первую очередь надо налаживать контакты. Например, здесь, на этом форуме.

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 02:05 
Заслуженный участник
Аватара пользователя


30/01/06
63955
amon в сообщении #1210669 писал(а):
IMHO, теория струн - это не очень физика

Не важно, важно, является ли Виттен теорфизиком :-)

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 02:14 
Заслуженный участник
Аватара пользователя


04/09/14
2940
ФТИ им. Иоффе СПб
Munin в сообщении #1210679 писал(а):
является ли Виттен теорфизиком
Формально - является, но те его результаты, с которыми я шапочно знаком это скорее математика. Но, тем не менее, уели.

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 02:19 
Супермодератор
Аватара пользователя


09/05/12
12947
Кронштадт
amon в сообщении #1210675 писал(а):
На матмехе Питерского университета упразднили практически всю физику,
Строго говоря, на отделении математики матмеха. :-) Это все-таки две большие разницы.
amon в сообщении #1210675 писал(а):
видимо, что бы не испортить математиков физическим подходом к проблемам, а может просто по дури.
Причин было несколько, но в каком-то смысле первая оказалась основной.

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 02:28 
Заслуженный участник
Аватара пользователя


04/09/14
2940
ФТИ им. Иоффе СПб
Pphantom в сообщении #1210686 писал(а):
Строго говоря, на отделении математики матмеха.
Ну, насколько мне известно практически из первых рук, даже у астрономов с физикой есть сложности ;)

 Профиль  
                  
 
 Re: Еще раз о мотивировке математики
Сообщение19.04.2017, 02:32 
Супермодератор
Аватара пользователя


09/05/12
12947
Кронштадт
amon в сообщении #1210687 писал(а):
Ну, насколько мне известно практически из первых рук, даже у астрономов с физикой есть сложности ;)
Кхм... какие именно? Можно, наверное, в ЛС.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 53 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: vamoroz


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group