2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5 ... 11  След.
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 13:22 
Заслуженный участник
Аватара пользователя


23/07/05
18019
Москва
wrest в сообщении #1196502 писал(а):
То есть функция записана формулой, содержащей только аналитические операции
А я разве упоминал слова "аналитические операции"? По-моему, я перечислил совершенно конкретный список допустимых операций, и предела в том списке не было.

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 13:38 
Заслуженный участник
Аватара пользователя


21/12/05
5936
Новосибирск
wrest, См. См Фихтенгольц, стр. 115
Ни разу Фихтенгольц не включал предел в число разрешённых операций, при порождении класса элементарных функций. Только 4 действия арифметики и суперпозиция.

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 14:46 


05/09/16
12274
bot в сообщении #1196510 писал(а):
Ни разу Фихтенгольц не включал предел в число разрешённых операций, при порождении класса элементарных функций.

Я этого и не утверждал. :) Но при аналитическом задании функций предел использовать можно.
Таким образом, мы видим, что утверждения
-- функция может быть задана аналитически
-- функция выражается через элементарные в конечном виде
Это разные утверждения.

Напомню вопрос, который задал ТС в оригинальном топике: "Можно ли аналитически решить уравнение вида $\sin(x)=x-a$, где $a= \operatorname{const}$."

Означает ли "решить уравнение аналитически"
a) записать решение в виде функции, выраженной через элементарные в конечном виде
б) записать решение в виде формулы, использующей только аналитические операции (в том числе операцию предельного перехода)
?

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 14:50 
Заслуженный участник


20/08/14
11966
Россия, Москва
bot в сообщении #1196510 писал(а):
Только 4 действия арифметики и суперпозиция.
О! Вот это мне нравится. Ну возможно ещё с арифметическим корнем. ;-) Остальное же - рядами, рядами. :mrgreen:

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 15:04 


05/09/16
12274
Dmitriy40 в сообщении #1196526 писал(а):
О! Вот это мне нравится. Ну возможно ещё с арифметическим корнем.

Корень туда уже входит. Имеются в виду арифметические операции с классами элементарных функций которых у Фихтенгольца 7, в том числе 1) целые и дробные многочлены 2) степени (включая корни) 3) показательные функции 4) логарифмы 5) синусы, косинусы, тангенсы и т.п. 6) гиперболические синусы, косинусы и т.п. 7) обратные тригонометрические -- арксинусы, аркксосинусы и т.п.

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 15:18 
Заслуженный участник
Аватара пользователя


23/07/05
18019
Москва
Dmitriy40 в сообщении #1196526 писал(а):
Ну возможно ещё с арифметическим корнем.
Корень входит в число основных элементарных функций, поскольку является частным случаем степенной функции, так что упоминать его ещё и как "операцию" не следует.

Dmitriy40 в сообщении #1196390 писал(а):
Спасибо всем за напоминание элементарности функций, как-то сбилось понятие в голове.
Опять сбилось?

wrest в сообщении #1196525 писал(а):
Но при аналитическом задании функций предел использовать можно.
Видите ли, понятие "аналитического выражения" несколько неопределённо. Мы можем как угодно определить какую-нибудь функцию, придумать для неё обозначение и использовать его в аналитических выражениях.
Кстати, если Вы включили пределы, то автоматически включаются производные и интегралы, поскольку это тоже пределы. И всевозможные ряды, ибо их суммы — тоже пределы. Да и Фихтенгольц явно говорит о том, что пределами дело далеко не заканчивается…

Между прочим, в ТФКП функции, локально представимые суммой степенного ряда, называются аналитическими.

wrest в сообщении #1196529 писал(а):
Имеются в виду арифметические операции с классами элементарных функций которых у Фихтенгольца 7, в том числе 1) целые и дробные многочлены 2) степени (включая корни) 3) показательные функции 4) логарифмы 5) синусы, косинусы, тангенсы и т.п. 6) гиперболические синусы, косинусы и т.п. 7) обратные тригонометрические -- арксинусы, аркксосинусы и т.п.
Ну, этот список несколько избыточен, поскольку многочлены и рациональные функции выражаются через степени и арифметические операции, гиперболические функции выражаются через показательную функцию и арифметические операции, а обратные гиперболические — через логарифм, степени и арифметические операции.

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 15:40 
Заслуженный участник


20/08/14
11966
Россия, Москва

(Someone)

Someone в сообщении #1196533 писал(а):
Опять сбилось?
Не, теперь скорее стёб. Ну нравится мне такое ограничение понятия элементарных функций, хоть и понимаю что неправильно. Не математик, мне простительно, обещаю нигде никого не агитировать. ;-)

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 15:51 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Someone
В любом случае, вы можете объяснить, чем интересен такой класс функций?

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 16:09 


05/09/16
12274
Someone в сообщении #1196533 писал(а):
Ну, этот список несколько избыточен, поскольку многочлены и рациональные функции выражаются через степени и арифметические операции, гиперболические функции выражаются через показательную функцию и арифметические операции, а обратные гиперболические — через логарифм, степени и арифметические операции.

Вот так вот Фихтенгольц пишет. Вероятно для удобства.

Someone в сообщении #1196533 писал(а):
Кстати, если Вы включили пределы, то автоматически включаются производные и интегралы, поскольку это тоже пределы.

Это не я включил, а Фихтенгольц :)
Да, я думаю производные (вернее, операцию дифференцирования) -- можно смело включать. Насчет интегралов и рядов не вполне уверен, но по-видимому, тоже можно.

Someone в сообщении #1196533 писал(а):
Видите ли, понятие "аналитического выражения" несколько неопределённо.

Совершенно согласен, и согласен с постом где предлагается определить функцию din(x) и заявить после этого, что "аналитическое решение имеется". Есть же гамма-функция, функции Бесселя и т.п., определенные таким вот образом (т.е. раз они часто применяются, то назовем их как-нибудь, и включим в функции, задаваемые аналитически).

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 16:31 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
wrest в сообщении #1196558 писал(а):
Да, я думаю производные (вернее, операцию дифференцирования) -- можно смело включать. Насчет интегралов и рядов не вполне уверен, но по-видимому, тоже можно.
Производная элементарной функции всегда будет элементарной функцией (с модулем только закавыка). Совсем иное дело интеграл.

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 16:50 


05/09/16
12274
Aritaborian в сообщении #1196565 писал(а):
Производная элементарной функции всегда будет элементарной функцией (с модулем только закавыка).

Раз есть хотя бы одна закавыка, значит уже не всегда :)
Интегралы кстати, в смысле непрерывности, гораздо лучше себя ведут.

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 17:04 
Заслуженный участник
Аватара пользователя


20/08/14
8816
wrest в сообщении #1196574 писал(а):
Раз есть хотя бы одна закавыка
Заковыку можно убрать, заявив, что производная элементарной функции является элементарной функцией на всех промежутках своего существования.
wrest в сообщении #1196574 писал(а):
Интегралы кстати, в смысле непрерывности, гораздо лучше себя ведут.
Интегралы от элементарных функций вообще обладают всеми их хорошими свойствами (просто потому, что первые производные от них - элементарные функции), но почему-то в этот класс не включены. Что наглядно демонстрирует искусственность выделения этого класса.

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 20:05 
Заслуженный участник
Аватара пользователя


23/07/05
18019
Москва
Aritaborian в сообщении #1196565 писал(а):
Производная элементарной функции всегда будет элементарной функцией (с модулем только закавыка).
Нет там никакой закавыки: $\lvert x\rvert'=\frac x{\lvert x\rvert}$.

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 20:14 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Anton_Peplov в сообщении #1196578 писал(а):
Интегралы от элементарных функций вообще обладают всеми их хорошими свойствами (просто потому, что первые производные от них - элементарные функции), но почему-то в этот класс не включены. Что наглядно демонстрирует искусственность выделения этого класса.


Класс функций, сводящихся к интегралам от элементарных, называется "квадратуры". Ну т. е. "решить уравнение в квадратурах" означает "свести ответ к конечному числу интегралов от элементарных функций".

 Профиль  
                  
 
 Re: Опять про элементарные функции
Сообщение02.03.2017, 20:15 
Заслуженный участник
Аватара пользователя


23/07/05
18019
Москва

(Dmitriy40)

Dmitriy40 в сообщении #1196545 писал(а):
Someone в сообщении #1196533 писал(а):
Опять сбилось?
Ну нравится мне такое ограничение понятия элементарных функций, хоть и понимаю что неправильно.
bot ни о каком ограничении понятия элементарной функции не говорил. Он говорил, что Фихтенгольц в своём определении тоже упоминает только четыре арифметических операции и суперпозицию.
Так что явно у Вас опять что-то сбилось. Ещё раз внимательно перечитайте определение.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 159 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 11  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group