Да, я знаю. Стандартный пример - дискретное пространство. И вообще пространство, где любое счетное множество замкнуто. В таких пространствах, если принять определение предела по Гейне в моей формулировке, получится, что каждая функция имеет предел в каждой точке (раз нестационарных сходящихся последовательностей нет, то для них выполняется любое условие, в т.ч. и требование определения предела). Это монструозно, конечно. Но вряд ли более монструозно, чем сходимость любой последовательности к любой точке в тривиальной топологии.
Ну что Вы, есть гораздо более интересные примеры. Например, тихоновский куб
(
— отрезок,
— континуум). Если хотите, это просто множество всевозможных функций, определённых на (фиксированном) множестве мощности континуум, в топологии поточечной сходимости (последовательностей тут недостаточно, надо рассматривать произвольные направленности: Дж. Л. Келли, Общая топология, глава 2 — "Сходимость по Мору — Смиту"). Сходящиеся последовательности в тихоновском кубе есть, но их слишком мало. Но если взять экстремально несвязное пространство (например, расширение Стоуна — Чеха натурального ряда; это просто стоуновское пространство булевой алгебры всех подмножеств натурального ряда), то в нём нетривиальных сходящихся последовательностей не будет.
очевидно не выполняется: в одноточечной окрестности
точки
не лежит никаких ее проколотых окрестностей.
Ну, если, как обычно, проколотая окрестность точки
— это любая её окрестность минус
, то лежит:
. Если Вы придумали своё определение проколотой окрестности, то может и не лежать.
Здесь при делах секвенциальность?
Да, топология секвенциального пространства определяется сходящимися последовательностями. Но я не знаю, хватит ли секвенциальности для эквивалентности пределов по Коши и по Гейне.
Если в определении предела по Гейне рассматривать не последовательности, а произвольные направленности, то эквивалентность будет.