В курсе матанализа понятию предела функции традиционно уделяется много внимания. Дается два определения (по Гейне и по Коши), доказывается их эквивалентность. Студентов заваливают заданиями по вычислению пределов элементарных функций. Между тем ни в одном из учебников общей топологии, которые мне довелось листать - Виро и К, Энгелькинга, Келли, Куратовского - мне не удалось обнаружить понятие предела функции. Пределы последовательности, направленности, фильтра - есть, сколько угодно, предела функции - нет.
Надо ли понимать это так, что понятие предела функции, введенное для
и
, не удается плодотворно обобщить на произвольное топологическое пространство? На первый взгляд, определение предела функции по Гейне - "точка
является пределом функции
(по Гейне) при
, если для любой сходящейся к
, но не содержащей
последовательности
последовательность
сходится к
" - можно перенести на произвольное топологическое пространство дословно. Предел по Коши я бы определил так: "точка
является пределом функции
(по Коши) при
, если для любой окрестности
точки
найдется проколотая окрестность
точки
такая, что
". И тогда даже известное в топологии понятие непрерывности в точке можно формулировать как в матане: функция
непрерывна в точке
, если имеет в этой точке предел по Коши, равный
.
Конечно, в экзотических пространствах так определенные пределы получат непривычные свойства. Нарушится тождественность этих определений: легко показать, что если функция имеет в точке предел по Коши, она имеет в нем тот же предел по Гейне, но вот обратное без дополнительных ограничений на топологию, похоже, неверно. Далее, в дискретном пространстве сходятся только стационарные последовательности, значит, последовательностей, сходящихся к
, но не содержащих
, просто не будет. Поэтому, по принятым в математике правилам обращения с пустым множеством, придется считать, что любая функция имеет предел по Гейне в любой точке. Получится, что в этом пространстве у последовательности только один предел, а у функции сколько угодно - фигня какая-то. Но, положа сердце на руку - уж какая область не боится экзотических обобщений, так это общая топология. В тривиальной топологии любая точка является пределом любой последовательности, и чо? Далее, можно предположить, что в анализе понятие предела функции важно в связи с понятием производной, асимптотиками, разложением в ряды и др., чего в общей топологии нет и потому ей это не нужно. Эта версия меня тоже не убеждает, потому что сразу возникает встречный вопрос, а зачем общей топологии нужно все то, что в ней есть. Вот всю эту кучу экзотических понятий топологи нашли интересными, а пределу функции места не нашлось? Не верю. Третья версия: есть понятие, обобщающее понятие предела функции, какой-нибудь "ультракирдык функции", и собственно предел не интересен как мелкий частный случай. Тогда вопрос, как называется этот ультракирдык.
И, наконец, не исключено, что я что-то упустил. Например, определение предела функции в упомянутых книгах. Помогите, что ли, распутаться.