Трудно объяснить, почему в результате неправильных действий получается неправильный ответ.
Вы живете на поверхности. Чтобы заставить переменную интегрирования там находиться, надо поверхность параметризовать. Как это делать - вообще-то Ваш выбор, но приведенная выше формула годится только для случаев, когда поверхность рассматривается как график функции двух переменных.
Запишем преобразование:

Это, кстати, весьма приличная параметризация. Для полного счастья не хватает области изменения параметра. У Вас там ниже некая область шла, осознанно, нет ли - но это нужная область. Так вышло.
Однако, для такой параметризации, общего вида, формула, которой Вы пользовались ранее, не годится. В таких случаях (да и вообще, это универсально для поверхностей в

)

, где

- элементарная площадка на плоскости, где лежит область изменения параметров.