2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 17:38 
Заслуженный участник


21/08/10
02/03/25
2555
Muha_ в сообщении #1065137 писал(а):
Там дискретность получалась из за "нефизичности" большинства решений. Это меня сбило с толку (причем здесь математика?).



На математическом языке "физичность" здесь заключается в том, что функция должна принадлежать $L^2$ (пространство квадратично интегрируемых функций). Кажется, я понял Ваши соображения. Действительно уравнение $L\phi=\lambda\phi$ ($L$ --- оператор, $\lambda$ -- собственое число) обычно можно решить при любом $\lambda$. Но не все такие решения будут затухать (причем достаточно быстро) на бесконечности (и справа, и слева). Так что на множестве физически допустимых функций (или, с точки зрения математики, при определении оператора на $L^2$ ) спектр получится дискретным. "Промежуточные" $\lambda$ дают функции $\phi$ не затухающие на бесконечности. Собственно именно поэтому в рамках чистой математики чтобы определить оператор, нужно не только задать правило преобразования функций, но и область определения оператора (пространство функций). При изменении области определения обычно меняется спектр. Но оператор с другой областью определения --- это уже другой оператор. На конечном интервале область определения, как правило, определяется граничными условиями на концах интервала. Другие гранусловия --- другой спектр (а значит и оператор другой). В курсах квантовой механики это все, действительно, обычно оказывается "в тени", явно не специфицируется.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 18:08 
Заслуженный участник
Аватара пользователя


31/01/14
11467
Hogtown
Munin в сообщении #1065055 писал(а):
Как-то я не могу сопоставить это с приведённым вами определением.


Это немного другое (но в данном случае близко к (2)). На пр-ве (гладких) функций меру обычно не задают, но есть метрика. Поэтому под "общим положением" понимаем такое что а) небольшое возмущение его не разрушает б) а любое "необщее" аппроксимруется общим. Т.е. необщим оказывается нигде не плотное множество (более ограничительно, чем 1й категории)

Но если рассмотреть не функции вообще, а полиномы (и введем обычную меру на пр-ве коэффициентов) то там пренебрежимые в смысле (2) окажутся также пренебрежимыми в смысле (1).

Другой пример: рассмотрим всякие геодезические на замкнутом многообразии (мн-во геодезических можно параметризовать начальной точкой и направлением, хотя можно ещё факторизовать—чтобы геодезическую считать один раз—но с точки дальнейшего это неважно) и предположим что замкнутые геодезические образуют пренебрежимое множество. В каком смысле? Да неважно! Если в одном, то автоматически и в другом. И так во многих задачах.

Поэтому каждый случай когда это не так интересен (IMHO). Разумеется, речь идёт о естественных задачах.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 18:08 
Заслуженный участник


21/09/15
998
Muha_
Мне кажется для нас, любителей, хорош учебник Садбери, который вы упоминали.
Посмотрите условия W1-W3 на стр 60, параграф 2.5 про непрерывный и дискретный спектр.
Там, правда, не все доказано, но достаточно ясно сформулировано

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 18:20 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Muha_ в сообщении #1065137 писал(а):
Т.е. оператор с дискретным спектром при непрерывных волновых функциях я могу найти в рассмотрении энергии квантового гармонического осциллятора?
Пока читал только очень поверхностное рассмотрение. Там дискретность получалась из за "нефизичности" большинства решений. Это меня сбило с толку (причем здесь математика?). Почитаю более серьезные рассмотрения квантового осциллятора.

Ещё раз, у вас с барабаном всё ясно? А то всякие квантовые гармонические осцилляторы - это искусственные усложнения, вам надо более простые вещи разобрать сначала.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 18:22 
Заслуженный участник
Аватара пользователя


31/01/14
11467
Hogtown
Muha_ в сообщении #1065126 писал(а):
Если векторы заданы функциями, тогда спектр оператора непрерывен. Найти бы пример, где спектр дискретен несмотря на то, что векторы состояния - функции.


Никакого отношения характер спектра к "функциям/матрицам" не имеет. Например у гармонического осциллятора спектр дискретен, а у матричного может быть непрерывным:

Red_Herring в сообщении #1064016 писал(а):
Да, кстати, этот оператор матричный, и даже трехдиагональный, но спектр у него непрерывный. Как только Вы разрешаете бесконечные недиагональные матрицы, так нельзя исключить непрерывного спектра.


У Шредингера для атома водорода отрицательный спектр дискретен и накапливается к $-0$, а неотрицательный непрерывен

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 18:24 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Red_Herring
Понятно, спасибо! (Я хотел ещё из "Механики" Арнольда цитату добыть, но не нашёл, хотя термин там встречается.)

То есть, при возне с гладкими функциями и многообразиями можно отличиями (1) от (2) пренебречь?

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 18:45 
Заслуженный участник
Аватара пользователя


31/01/14
11467
Hogtown
Munin в сообщении #1065166 писал(а):
То есть, при возне с гладкими функциями и многообразиями можно отличиями (1) от (2) пренебречь?

Я бы не поклялся на все случаи жизни.

Но, кстати, Арнольда интересуют и более тонкие вещи: многообразие коразмерности 2 более пренебрежимо чем многообразие коразмерности 1 и т.д.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 18:54 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Red_Herring в сообщении #1065175 писал(а):
Я бы не поклялся на все случаи жизни.

Ну ладно, меня это устраивает :-)

А до Арнольда мне тем более далеко... В книжке Теория катастроф дальше первых страниц залезть не получилось, дальше пролистывал только ради картинок.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 20:57 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Red_Herring в сообщении #1064986 писал(а):
У Вас есть хорошая ссылка?


http://arxiv.org/abs/math/0107061

(эта статья в вики тоже упоминается).

-- Ср, 21 окт 2015 11:41:36 --

Red_Herring в сообщении #1065041 писал(а):
Тополог и специалист по теории меры могут разделить прямую так, что каждый возьмёт всю её, исключая нечто пренебрежимое (в его понимании). Но это упражнение по функциональному анализу. А тут такое возникает в естественной задаче первоначально никакого отношения к этому не имеющей.


Справедливости ради стоит отметить, что то разбиение, которое там для $\alpha$, -- это разбиение на диофантовы и лиувиллевы числа, которое было придумано, когда ещё никаких Almost Mathieu не было; собственно, это даже 19 век, а не 20-й. Т. е. "естественной задачей, первоначально никакого отношения к этому не имеющей", скорее всего, сначала был именно вопрос о том, сколько каких иррациональных чисел бывает.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение21.10.2015, 23:49 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Alex-Yu в сообщении #1065140 писал(а):
На математическом языке "физичность" здесь заключается в том, что функция должна принадлежать $L^2$ (пространство квадратично интегрируемых функций).


Не совсем. Вы таким образом называете физичными только связанные состояния и выкидываете непрерывный спектр.

Более точно — нефизичными являются экспоненциально растущие на бесконечности решения. А ограниченные или полиномиально растущие соответствуют непрерывному спектру.

У этого есть точная формулировка — теорема Шноля. Можно найти в главе 2 книги Цикон—Фрезе—Кирш—Саймон.

-- Ср, 21 окт 2015 13:58:10 --

Alex-Yu в сообщении #1065140 писал(а):
Так что на множестве физически допустимых функций (или, с точки зрения математики, при определении оператора на $L^2$ ) спектр получится дискретным. "Промежуточные" $\lambda$ дают функции $\phi$ не затухающие на бесконечности. Собственно именно поэтому в рамках чистой математики чтобы определить оператор, нужно не только задать правило преобразования функций, но и область определения оператора (пространство функций).


Опять же, нет. Операторы определены на $L^2$ — это да. Но из этого не следует, что спектр обязательно дискретный; определение спектра другое и оно вообще не апеллирует к собственным функциям; теорема Шноля — это именно теорема, а не определение, и она верна только для некоторых классов операторов (в который, впрочем, попадают все операторы Шредингера).

Прелесть спектральной теории в том, что эти "собственные функции" непрерывного спектра/решения типа плоских волн никогда не нужны поодиночке, а всегда возникают пакетами. А волновой пакет уже можно загнать в $L^2$. Собственно, спектральный проектор — это и есть волновой пакет.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение22.10.2015, 00:18 
Заслуженный участник
Аватара пользователя


30/01/06
72407
g______d в сообщении #1065262 писал(а):
Прелесть спектральной теории в том, что эти "собственные функции" непрерывного спектра/решения типа плоских волн никогда не нужны поодиночке, а всегда возникают пакетами. А волновой пакет уже можно загнать в $L^2$. Собственно, спектральный проектор — это и есть волновой пакет.

Есть ещё второй вариант: большой объемлющий резонатор.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение22.10.2015, 00:46 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Munin в сообщении #1065274 писал(а):
Есть ещё второй вариант: большой объемлющий резонатор.


Фактически, большой объемлющий резонатор — это "аппроксимация" оператора на оси операторами на отрезках. Таким образом, действительно можно что-то сказать про спектр как множество (ровно это и делается в статье по ссылке парой постов выше). Но про тип спектра таким образом что-то сказать очень и очень проблематично.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение22.10.2015, 01:36 
Заслуженный участник
Аватара пользователя


30/01/06
72407
g______d в сообщении #1065286 писал(а):
Фактически, большой объемлющий резонатор — это "аппроксимация" оператора на оси операторами на отрезках.

Да. И волновой пакет тоже аппроксимация. И при этом, это всё ж таки немножко разные аппроксимации.

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение22.10.2015, 02:29 
Заслуженный участник
Аватара пользователя


11/12/05
10255

(Оффтоп)

Блин. Пойду открывать тему "Хочу знать математику как g______d и Red_Herring. Подскажите список литературы."

 Профиль  
                  
 
 Re: Дискретнтые и непрерывные собственные значения - в чем суть?
Сообщение22.10.2015, 09:11 
Заслуженный участник


21/08/10
02/03/25
2555
g______d в сообщении #1065262 писал(а):
Операторы определены на $L^2$ — это да. Но из этого не следует, что спектр обязательно дискретный;


Ну это само-собой. Я хотел подчеркнуть, что задав только правило преобразования функций мы еще не определяем оператор, нужно еще добавить область определения. Из стандартных курсов КМ это, кстати, совершенно не ясно. Вот у ТС и возникли проблемы. Ну а то, что "спектр получится дискретным" --- это просто описка. Конечно, не только дискретным. Боее того, дискретного может вообще не быть (а может и быть).

-- Чт окт 22, 2015 13:25:19 --

g______d в сообщении #1065262 писал(а):
определение спектра другое и оно вообще не апеллирует к собственным функциям



Вроде сказать, что $L-\lambda$ не имеет обратного это то же самое, что сказать, что есть собственные функции. Разве нет? Но так получится только дискретная часть спекта, это я знаю. Обратный может быть, но быть при этом неограниченным (это и соответствует непрерывному спектру и здесь совершенно очевидна связь с "приближенными собственными функциями": очевдно, что в это означает что $L-\lambda$ не ноль, но "почти ноль" на некоторых функциях из $L^2$). А остаточный мне просто не интересен (считаем, что область неограниченности оператора всюду плотная, комбинацией "приближенных собственных функций" и собственных функций можно апроксимировать все, что угодно, с любой конечной точностью). Чисто математически этот вопрос довольно сложен, я знаю что сложен (но довольно поверхностно знаком с соответствующей математикой). Думаю, для физиков в этом вопросе была бы полезна некая "апроксимация" промежуточная между честной математикой и тем, что пишут в курсах квантовой механики.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 60 ]  На страницу Пред.  1, 2, 3, 4  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Bing [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group