2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Предел рекуррентно заданной последовательности
Сообщение25.02.2015, 00:32 
dsge в сообщении #982121 писал(а):
периодических решений или других предельных множеств быть не может, поскольку $z_n=\frac{x_{n}}{x_{n-1}}$ стремится монотонно к единице.

То, что на биссектрисе не может быть других предельных множеств - это почти очевидно.

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение25.02.2015, 05:46 
Аватара пользователя
ex-math в сообщении #982055 писал(а):
TOTAL
Не получается, этого неравенства мало.


$t_n=X_n + \frac{1}{X_n}$

$2 \le t_{n+1} = \frac12 (t_n + t_{n-1}) - \frac{(X_{n}-X_{n-1})^2}{2X_{n}X_{n-1}(X_{n}+X_{n-1})}$

Почему мало? Последовательность $t_n$ сходится, поэтому последовательность $X_n$ сходится (а не превращается в $X_{n+1}=X_n^{-1} \ne 1$)

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение25.02.2015, 10:12 
Аватара пользователя
TOTAL
А как Вы доказываете сходимость $t_n $ из оценки члена средним арифметических двух предыдущих?
Я вижу только вариант проитерировать это неравенство, получив что-то типа $t_{n+k}<(1-2^{-k})t_n+2^{-k}t_{n-1}$. Тогда если последовательность ограничена сверху, получается своего рода "отсроченная монотонность" и можно применить стандартное доказательство через точную нижнюю грань. Может, можно как-то проще и изящнее?

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение25.02.2015, 10:24 
Аватара пользователя
Что сходится, это ладно; откуда следует, что сходится к 1 (в терминах $t$ - к 2)?

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение25.02.2015, 10:30 
Аватара пользователя
ex-math в сообщении #982279 писал(а):
TOTAL
А как Вы доказываете сходимость $t_n $ из оценки члена средним арифметических двух предыдущих?
Я вижу только вариант проитерировать это неравенство, получив что-то типа $t_{n+k}<(1-2^{-k})t_n+2^{-k}t_{n-1}$. Тогда если последовательность ограничена сверху, получается своего рода "отсроченная монотонность" и можно применить стандартное доказательство через точную нижнюю грань. Может, можно как-то проще и изящнее?

Последовательность $M_n=\max\{t_{n}, t_{n-1}\}$ монотонно не возрастает и ограничена снизу, поэтому сходится. Поэтому $t_n $ тоже сходится (не важно к чему). Поэтому $X_n $ тоже сходится.

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение25.02.2015, 11:20 
TOTAL в сообщении #982285 писал(а):
Поэтому $t_n $ тоже сходится (не важно к чему).

$t_1=a, t_2=a, t_n=a, n>2$, где $a$ - любое положительное число.
Мои предположения выше не совсем точны. К тому же собственные числа лианеаризации в т. $(1,1)$ лежат на единичной окружности.

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение25.02.2015, 11:34 
Аватара пользователя
dsge в сообщении #982311 писал(а):
TOTAL в сообщении #982285 писал(а):
Поэтому $t_n $ тоже сходится (не важно к чему).
$t_1=a, t_2=a, t_n=a, n>2$, где $a$ - любое положительное число.

Что может быть, только если $X_1=X_2=X_3= \cdots$, т.к.
$2 \le t_{n+1} = \frac12 (t_n + t_{n-1}) - \frac{(X_{n}-X_{n-1})^2}{2X_{n}X_{n-1}(X_{n}+X_{n-1})}$

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение25.02.2015, 14:04 
Аватара пользователя
TOTAL
Спасибо. Очень красиво.
А я еще и проврался в своем неравенстве :oops:

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение26.02.2015, 13:37 
ex-math в сообщении #982386 писал(а):
TOTAL
Спасибо. Очень красиво.

Да. $\frac12 (t_n + t_{n-1})$ по сути, есть функция Ляпунова.

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение27.02.2015, 08:03 
TOTAL в сообщении #982285 писал(а):
Последовательность $M_n=\max\{t_{n}, t_{n-1}\}$ монотонно не возрастает и ограничена снизу, поэтому сходится. Поэтому $t_n $ тоже сходится (не важно к чему).

А почему $t_n$ тоже сходится?

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение27.02.2015, 10:04 
Аватара пользователя
Padawan в сообщении #983259 писал(а):
TOTAL в сообщении #982285 писал(а):
Последовательность $M_n=\max\{t_{n}, t_{n-1}\}$ монотонно не возрастает и ограничена снизу, поэтому сходится. Поэтому $t_n $ тоже сходится (не важно к чему).

А почему $t_n$ тоже сходится?

Если $M_n$ сходится (сверху) к $M,$ то $2M- M_n \le t_n \le  M_n$

 
 
 
 Re: Предел рекуррентно заданной последовательности
Сообщение27.02.2015, 11:49 
dsge в сообщении #982837 писал(а):
ex-math в сообщении #982386 писал(а):
TOTAL
Спасибо. Очень красиво.

Да. $\frac12 (t_n + t_{n-1})$ по сути, есть функция Ляпунова.

Точнее, $t_n + \frac12 t_{n-1}$

 
 
 [ Сообщений: 27 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group