2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Геодезическая-обратная задача.
Сообщение24.01.2008, 17:08 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Как известно, по данной метрике$g^{\alpha\beta}$ можно найти геодезическую с помощью уравнения:

$$\frac{d^2u^\alpha}{ds^2}+\Gamma^\alpha_{\mu\nu} u^\mu u^\nu =0
где
$$\Gamma^\alpha_{\mu\nu} =\frac 1 2 g^{\alpha\beta} \left(\frac{\partial g_{\mu\beta} }{\partial x^\nu}+\frac{\partial g_{\nu\beta }}{\partial x^\mu}- \frac{\partial  g_{\mu\nu}}{\partial x^\beta} \right )$$ - символы Кристоффеля

А можно ли решить обратную задачу: если считать какую-то кривую геодезической и она задана в параметрическом виде, то найти метрику для неё?!

 Профиль  
                  
 
 Re: Геодезическая-обратная задача.
Сообщение25.01.2008, 00:37 
Заслуженный участник


19/06/05
486
МГУ
PSP писал(а):
Как известно, по данной метрике$g^{\alpha\beta}$ можно найти геодезическую с помощью уравнения:

$$\frac{du^\alpha}{ds}+\Gamma^\alpha_{\mu\nu} u^\mu u^\nu =0
Ничего не напутали? Насколько я помню, уравнение (точнее, система уравнений) должно быть второго порядка, что-то вроде этого:
$$\frac{d^2u^\alpha}{dt^2}+\Gamma^\alpha_{\mu\nu} \frac{du^\mu}{dt} \frac{du^\nu}{dt} =0$$

 Профиль  
                  
 
 Re: Геодезическая-обратная задача.
Сообщение25.01.2008, 00:55 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
Gordmit писал(а):
[Ничего не напутали? Насколько я помню, уравнение (точнее, система уравнений) должно быть второго порядка


Там, наверное, $u^{\alpha}=\frac{dx^{\alpha}}{ds}$, так что как раз второго порядка и получается.

 Профиль  
                  
 
 Re: Геодезическая-обратная задача.
Сообщение25.01.2008, 01:44 
Заслуженный участник


19/06/05
486
МГУ
Someone писал(а):
Там, наверное, $u^{\alpha}=\frac{dx^{\alpha}}{ds}$, так что как раз второго порядка и получается.
Да, вероятно так, спасибо. (Просто подумал, что под $u^\alpha=u^\alpha(s)$ понимаются сами геодезические, а это скорости.) Но все равно то, что система второго порядка (а значит достаточно сложная!), надо иметь в виду :D Так как скорее всего и задача составления системы такого вида по заданному решению именно из-за этого факта тоже непроста...

Добавлено спустя 23 минуты 50 секунд:

Хотя нет, постойте. Если кривая задана, то мы можем честно посчитать $\frac{dx^\alpha}{ds}$ и $\frac{d^2x^\alpha}{ds^2}$, и после этого у нас получится просто система линейных уравнений на $\Gamma_{\mu\nu}^\alpha$. Если у этой системы есть решение, не зависящее от $s$ (т.е. просто набор чисел, обращающий систему в тождество при всех $s$), то задача просто сведется к нахождению метрики по набору символов Кристоффеля...

 Профиль  
                  
 
 
Сообщение25.01.2008, 04:41 
Заслуженный участник


22/01/07
605
Локально можно, конечно, и много. Например, объявить эту кривую (если она дост. гладкая) за ось переменной x_n, добавить других координат, это несложно, и в этих координатах положить метрику равной евклидовой.

 Профиль  
                  
 
 Re: Геодезическая-обратная задача.
Сообщение25.01.2008, 09:34 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Gordmit писал(а):
PSP писал(а):
Как известно, по данной метрике$g^{\alpha\beta}$ можно найти геодезическую с помощью уравнения:

$$\frac{du^\alpha}{ds}+\Gamma^\alpha_{\mu\nu} u^\mu u^\nu =0
Ничего не напутали? Насколько я помню, уравнение (точнее, система уравнений) должно быть второго порядка, что-то вроде этого:
$$\frac{d^2u^\alpha}{dt^2}+\Gamma^\alpha_{\mu\nu} \frac{du^\mu}{dt} \frac{du^\nu}{dt} =0$$

Извините, опечатался.Да,правильно вот так:
$$\frac{d^2u^\alpha}{ds^2}+\Gamma^\alpha_{\mu\nu} \frac{du^\mu}{ds} \frac{du^\nu}{ds} =0$$

Добавлено спустя 18 минут 12 секунд:

Gordmit писал(а):
Хотя нет, постойте. Если кривая задана, то мы можем честно посчитать $\frac{dx^\alpha}{ds}$ и $\frac{d^2x^\alpha}{ds^2}$, и после этого у нас получится просто система линейных уравнений на $\Gamma_{\mu\nu}^\alpha$. Если у этой системы есть решение, не зависящее от $s$ (т.е. просто набор чисел, обращающий систему в тождество при всех $s$), то задача просто сведется к нахождению метрики по набору символов Кристоффеля...

А если эта заданная кривая- обыкновенная винтовая линия, уравнение которой в общем виде вот:

В общем случае, если мы имеем A_{ij} -матрицу поворота(т.е. det \left||A_{ij}\right|| =1 ) и B_i- вектор сдвига, получаем уравнение винтовой линии в общем виде:

$$\mu^1=A_{11} \frac {\sin^2( \alpha)}  {k} sin \left(  \frac{ks}  {\sin( \alpha) }  \right)+A_{12}\left(- \frac {\sin^2( \alpha)}  {k} cos \left(  \frac{ks}  {\sin( \alpha) }  \right )\right)+A_{13}s \cos( \alpha) +B_1$$
$$\mu^2=A_{21} \frac {\sin^2( \alpha)}  {k} sin \left(  \frac{ks}  {\sin( \alpha) }  \right)+A_{22}\left(- \frac {\sin^2( \alpha)}  {k} cos \left(  \frac{ks}  {\sin( \alpha) }  \right )\right)+A_{23}s \cos( \alpha) +B_2$$
$$\mu^3=A_{31} \frac {\sin^2( \alpha)}  {k} sin \left(  \frac{ks}  {\sin( \alpha) }  \right)+A_{32}\left(- \frac {\sin^2( \alpha)}  {k} cos \left(  \frac{ks}  {\sin( \alpha) }  \right )\right)+A_{33}s \cos( \alpha) +B_3$$

Можно ли решить данную задачу при такой кривой?

 Профиль  
                  
 
 
Сообщение25.01.2008, 14:24 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Gafield писал(а):
Локально можно, конечно, и много. Например, объявить эту кривую (если она дост. гладкая) за ось переменной x_n, добавить других координат, это несложно, и в этих координатах положить метрику равной евклидовой.

Ну и как это практически сделать в случае обыкновенной винтовой линии?

 Профиль  
                  
 
 
Сообщение25.01.2008, 21:00 
Заслуженный участник


22/01/07
605
Можно сказать еще так: пусть $f$ - диффеоморфизм окрестности $U$ некоторой точки кривой в единичный шар евклидова пространства D, причем кривая переводится в интервал оси $y_n$. Тогда $ds^2=f^*(d y^2)$, где $dy^2$ - евклидова метрика в $D$ и будет искомой. Очевидно, таких отображений много, так что решение неединственно.
Для винтовой линии
$$
x_1=\cos(t),
$$
$$
x_2=\sin(t),
$$
$$
x_3=t,
$$
рассмотрим соседние линии
$$
x_1=y_1+\cos(t),
$$
$$
x_2=y_2+\sin(t)
$$
$$
x_3=t,
$$
и в ее окрестности $U$ возьмем координаты $(y_1,y_2,y_3=t)$. Тогда имеется гладкое отображение $f:U\to \mathbb R^3$, $x\to y=(x_1-\cos(x_3),x_2-\sin(x_3),x_3)$, кривая переходит в прямую $\{y_1=0,y_2=0\}$. Метрика
$$
ds^2=f^*(d y^2)=d(x_1-\cos(x_3))^2+d(x_2-\sin(x_3))^2+dx_3^2
$$
будет ответом.

 Профиль  
                  
 
 
Сообщение03.06.2008, 12:08 
Аватара пользователя


17/06/06
36
Odessa
PSP писал(а):
Gafield писал(а):
Локально можно, конечно, и много. Например, объявить эту кривую (если она дост. гладкая) за ось переменной x_n, добавить других координат, это несложно, и в этих координатах положить метрику равной евклидовой.

Ну и как это практически сделать в случае обыкновенной винтовой линии?

Вот если сузить задачу до "найти поверхности в трехмерном евклидовом пространстве, семейство винтовых линий на которых будет геодезическими линиями", то задача будет иметь более определенное и геометрически наглядное решение.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 9 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group