2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4  След.
 
 Мир, как натянутое нечто, разделяющее непонятно что
Сообщение04.02.2015, 23:11 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Одной сегодняшней темой навеянные мысли помещаю сразу в дискуссионный раздел, ибо речь у нас пойдёт о вещах опасно склонных к набиганию домиков аттракции любителей "наглядно представить себе электрон". Заранее заклинаю означенный товарищей не относиться слишком серьёзно к следующему ниже. Издав же сей заведомо обречённый на игнорирование клич, приступаю к сути.

Возьмём плоское псевдоэвклидово пространство $\mathbb{E}^{2,3}$ и рассмотрим в нём следующую $(1,3)$-поверхность ${\mathbf{r}} = \left\{ {\mathop t\limits^ +  ,\mathop x\limits^ -  ,\mathop y\limits^ -  ,\mathop z\limits^ -  ,\mathop \varphi \limits^ +  } \right\}$, где $\varphi  = \varphi \left( {t,x,y,z} \right)$ и над каждой компонентой записан знак с которым её квадрат входит в интервал пространства $\mathbb{E}^{2,3}$. Взяв в качестве координат $x^\mu   = \left( {t,x,y,z} \right)$, посчитаем на нашей поверхности метрику $g_{\mu \nu }  \equiv \left\langle {{\mathbf{r}}_{,\mu } ,{\mathbf{r}}_{,\nu } } \right\rangle  = \eta _{\mu \nu }  + \varphi _{,\mu } \varphi _{,\nu } $, где $\eta _{\mu \nu }  = \operatorname{diag} \left( { + , - , - , - } \right)$. Нетрудно видеть, что $g^{\mu \nu }  = \eta ^{\eta \nu }  - \dfrac{{\varphi ^{,\mu } \varphi ^{,\nu } }}{{1 + \varphi ^{,\alpha } \varphi _{,\alpha } }}$, где $\varphi ^{,\alpha }  \equiv \eta ^{\alpha \beta } \varphi _{,\beta } $. Откуда легко следует $\left| g \right| = \left| {1 + \varphi ^{,\alpha } \varphi _{,\alpha } } \right|$.

Вот оно-то мне и было надо, потому как сейчас я намерен положить
$$\delta \int {\sqrt {1 + \varphi ^{,\alpha } \varphi _{,\alpha } } } d^4 x = 0$$что даёт
$$\left( {\frac{{\varphi ^{,\mu } }}{{\sqrt {1 + \varphi ^{,\alpha } \varphi _{,\alpha } } }}} \right)_{,\mu }  = 0$$или, раскрыв скобки,
$$\left( {1 + \varphi ^{,\alpha } \varphi _{,\alpha } } \right)\square \varphi  - \varphi ^{,\mu } \varphi ^{,\nu } \varphi _{,\mu \nu }  = 0$$Итак, песочница готова. Прошу играться! :D

Отчётливо вижу плоские волны (удивительно простые как для такого страхолюдища), статическую сферически симметричную "частичку" и в общих чертах представляю как учесть слабое взаимодействие сталкивающихся плоских волн (не ясно, как там со сходимостью).

Хотел бы яснее, но пока очень приблизительно вижу рассеяние плоской волны на "частичке" и взаимодействие двух разнесённых "частичек".

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение04.02.2015, 23:40 
Заслуженный участник


25/12/11
750
Просто замечание. То, что вы получили (и как вы получили) это вариант довольно известного Dirac-Born-Infield действия, которое получается на бране. Хотя сигнатуру объемлющего все-таки берут с минусом. На что это повлияет сразу не скажу (хотя первая мысль - что со стабильностью получается?) так что поиграться наверное есть с чем, но и подглядывать есть куда

-- 05.02.2015, 00:46 --

Я к тому, что если вы действие разложите в приближении малых $\varphi$, у вас получится кинчлен с плохим знаком. С другой стороны, есть два но. Во-первых, может оказаться, что в мире где есть только это $\varphi$ это ни на что не повлияет (надо смотреть нелинейные эффекты). А во-вторых, пусть даже около $\varphi=0$ нестабильность, около другой конфигурации все может быть хорошо

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение04.02.2015, 23:51 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Я хотел такое придумать, но неудачно. А тут успешно.

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение04.02.2015, 23:59 
Заслуженный участник


25/12/11
750
хотя не, это я сигнатуру попутал (чтоб их, космологов...) :facepalm:
получается $\simeq +\frac{1}{2}(\dot{\varphi}^2-\partial_i\varphi\partial_i\varphi)$

-- 05.02.2015, 01:01 --

Но вот если я посчитаю гамильтониан
$H=\frac{\dot{\varphi}^2}{\sqrt{1+\partial_\mu\varphi\partial^\mu\varphi}}-\sqrt{1+\partial_\mu\varphi\partial^\mu\varphi}=\frac{-1+(\partial_i\varphi)^2}{\sqrt{1+\partial_\mu\varphi\partial^\mu\varphi}}$
, т.е. знаконеопределенный. Не очень хорошо

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение05.02.2015, 00:16 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
fizeg в сообщении #973786 писал(а):
Хотя сигнатуру объемлющего все-таки берут с минусом. На что это повлияет сразу не скажу (хотя первая мысль - что со стабильностью получается?)
Например, "частички" разные получаются. Если взять минус, то кишка вытягивается куда-то в дальние края, а для плюса всё компактно.

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение05.02.2015, 01:15 
Заслуженный участник


25/12/11
750
Смотрю я снова на гамильтониан... по-моему он все-таки ограничен, да еще и снизу. Так что со стабильностью, даже наверное в квантовом смысле все будет ок

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение05.02.2015, 18:02 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Подробней о плоских волнах. Если искать решение в виде $\varphi  = \phi \left( {k_\alpha  x^\alpha  } \right)$ с постоянными ${k_\alpha  }$, то получим $k_\alpha  k^\alpha   = 0$ и отсутствие ограничений на функцию $\phi $. Замечу, что это решение точное. Приближённо такая картина справедлива и в общем случае, если только $\varphi $ мало. Действительно, ограничиваясь в$$\left( {1 + \varphi ^{,\alpha } \varphi _{,\alpha } } \right)\square \varphi  - \varphi ^{,\mu } \varphi ^{,\nu } \varphi _{,\mu \nu }  = 0$$линейными членами, получим $\square \varphi \approx 0$. Для того чтобы учесть нелинейные поправки поступим следующим образом:
$$\[
\varphi  = \sqrt \varepsilon  \left( {{}^0\varphi  + {}^1\varphi \varepsilon  + {}^2\varphi \varepsilon ^2  + ...} \right)
\]
 $$где $\varepsilon$ - малая, но конечная положительная величина, а корень квадратный нужен для пущей эстетизации вида рекуррентной последовательности:
$$\[
\begin{gathered}
  \square {}^0\varphi  = 0 \hfill \\
  \square {}^1\varphi  = {}^0\varphi ^{,\mu }  \cdot {}^0\varphi ^{,\nu }  \cdot {}^0\varphi _{,\mu \nu }  \hfill \\
  ... \hfill \\ 
\end{gathered} 
\]
$$Итак, кто первый решит задачу о лобовом столкновении двух плоских волн конечной ширины?

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение06.02.2015, 08:34 
Заслуженный участник


25/12/11
750
Утундрий в сообщении #974194 писал(а):
Если искать решение в виде $\varphi  = \phi \left( {k_\alpha  x^\alpha  } \right)$ с постоянными ${k_\alpha  }$, то получим $k_\alpha  k^\alpha   = 0$ и отсутствие ограничений на функцию $\phi $

Еще одно замечание. Есть еще $\phi=Ak_\alphax^\alpha+B$ с произвольным $k_\alpha$

-- 06.02.2015, 09:37 --

В общем забыл поставить пробел в формуле, а флуд-контроль или что-то вроде этого поправить не дает. Линейная функция от $k_\alpha x^\alpha$

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение06.02.2015, 08:44 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Ну, это неинтересно.

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение06.02.2015, 09:31 
Заслуженный участник


25/12/11
750
Утундрий
Вы представьте себе, что такое решение представляет с точки зрения объемлющего пространства. Пусть даже вы симметрии в нем и нарушили, ограничив возможные колебания вашей браны.

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение06.02.2015, 10:01 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
fizeg в сообщении #974484 писал(а):
что такое решение представляет с точки зрения объемлющего пространства.

Простой сдвиг и поворот отсчётной гиперплоскости.

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение09.02.2015, 15:23 
Аватара пользователя


14/11/12
1368
Россия, Нижний Новгород
Есть две операции от очерёдности применения которых зависит "смысл жизни, Вселенной и всё такое":

Операция номер один:
$$
X^0(x) = x^0, \; X^1(x) = x^1, \; X^2(x) = x^2, \; X^3(x) = x^3, \; X^4(x) = \varphi(x^0, x^1, x^2, x^3) \eqno(1)
$$
Операция номер два:
$$
\delta \int \sqrt{\det \left[ \eta_{A B} \frac{\partial X^A}{\partial x^{\mu}} \frac{\partial X^B}{\partial x^{\nu}} \right] } \; d_4 x = 0 \eqno(2)
$$

Вариант 1. Ежели сначала выполнить (1), затем (2), то получим одно уравнение на одну функцию $\varphi(x)$.

Вариант 2. А ежели сначала выполнить (2) [получив пять уравнений на пять функций $X^A(x)$], а потом выполнить анзац (1), то тут бабка на двое сказала удовлетворится ли система из пяти уравнений одной функцией $\varphi(x)$.

Второй вариант сильно неудобен по сравнению с первым вариантом (больше головной боли), но только лишь он имеет геометрическую интерпретацию движения 4-браны в 5-мерном мире.

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение09.02.2015, 16:59 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
SergeyGubanov в сообщении #975849 писал(а):
ежели сначала выполнить (2) [получив пять уравнений на пять функций $X^A(x)$], а потом выполнить анзац (1)

Варьировали без учёта связи, а потом тупо их наложили? Ну, так просто не делают.

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение09.02.2015, 17:54 
Заслуженный участник
Аватара пользователя


30/01/06
72407
...Хм-м-м, теоретицсски не делают, а нельзя ли из этого смастырить расчётный итерационный метод?

 Профиль  
                  
 
 Re: Мир, как натянутое нечто, разделяющее непонятно что
Сообщение09.02.2015, 18:38 
Аватара пользователя


04/06/14
80
Утундрий в сообщении #973772 писал(а):
Итак, песочница готова. Прошу играться! :D

Узковата песочница-то, скучно играться. Почему анти-де Ситтер? Ну хоть бы до конформной группы расширили бы.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 46 ]  На страницу 1, 2, 3, 4  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group