Центры всех трёх рассматриваемых треугольников совпадают.
Точки пересечения серединных треугольников внешних треугольников лежат на прямых, являющихся продолжениями медиан исходного треугольника. На этих же прямых ещё лежат по две точки пересечения самих внешних треугольников, а также середины коротких сторон шестиугольника.
Середины длинных сторон зелёного шестиугольника (т.е. имеющих длины
,
,
) образуют треугольник, подобный серединному треугольнику заданного, их стороны параллельны, и на серединах сторон этого треугольника лежат вершины заданного.
-- 31.01.2015, 05:51 --Ну вот и найден алгоритм построения внутреннего треугольника для заданного.
1. Дан треугольник.
2. Строим его медианы и серединный треугольник.
3. Ставим точки пересечения медиан со сторонами серединного треугольника.
4. Проводим прямые, проходящие через эти точки пересечения и вершины исходного треугольника, причём есть две вершины на выбор: "левая" и "правая". Выбираем только одну из двух каждый раз.
5. Точки пересечения этих прямых дают нам внутренний треугольник.
6. Выбираем вместо "правой" вершины "левую" в п. 4, или наоборот, и получаем второй внутренний треугольник.