illuminatesПолагаю, такая ситуация не должна встретиться. Что значит, "взяли матрицу в чёрт знает каком базисе"? На базаре у барыги чтоль её купили, или на дороге подобрали?
Вообще, первичным является понятие "оператор" - как некий рецепт

(алгоритм, список действий, механизм) для преобразования любого вектора. В конкретной задаче, если только понятие "оператор" в ней оказывается полезным, нужный оператор будет каким-то естественным образом задан ещё до выбора всякого базиса.
Затем мы сами выберем удобный для решения задачи базис

, и сумеем применить заданный оператор к базисным векторам, получив тем самым из них другие векторы:

Кроме того, в конкретной задаче заранее будет задано и некое правило скалярного произведения векторов. Поэтому мы, в принципе, должны суметь скалярно перемножить эти векторы

с базисными векторами, получив тем самым числовые значения матричных элементов оператора в данном базисе:

Вот так появляется матрица оператора; при этом мы знаем, к какому базису она относится. Если же по ходу решения задачи окажется удобным перейти в другой базис, то вот тогда и пригодятся формулы "преобразования оператора". Бывает и так, что свойства оператора легче задать сразу в конкретном базисе, а решать дальнейшую задачу оказывается удобнее в другом базисе - тогда тоже пойдут в дело формулы "преобразования оператора".
Самые удобные базисы - ортонормированные. Если же взять не ортонормированный базис, то даже матрица оператора тождественного преобразования (такой оператор

на любой вектор действует просто как умножение на число

) окажется в общем случае сложной, НЕ "единичной" матрицей:

(числа

тогда будут играть роль типа "метрического тензора" в пространстве состояний в неортогональном базисе). В большинстве задач КМ, особенно на студенческом, учебном уровне, не возникает необходимости пользоваться неортогональными базисами. Так что, не забивайте ими себе голову без надобности.
Вообще, начинать изучать КМ-теорию надо обязательно параллельно с решениями задачек из студенческих задачников, а иначе все абстрактные формулировки останутся в голове невостребованными и потому непонятыми как следует.
А если освоение матриц идёт с большим трудом, то полезно вообще без КМ самому себе придумать и разобрать задачку типа из обычной евклидовой геометрии на плоскости. Например, возьмите лист бумаги из тетрадки в клеточку, проведите диагональ под 45 градусов, и пусть оператором

у вас будет процедура зеркального отражения векторов относительно этой диагонали. Всё, оператор задан. Теперь выбирайте разные базисы и смотрите, какие будут получаться матрицы этого оператора в разных базисах. Например, возьмите базис в виде горизонтального и вертикального ортов; найдёте некую матрицу

. А затем возьмите базис в виде орта, идущего вдоль той же диагонали, и орта ей перпендикулярного - получится другая матрица того же оператора. Заодно этот пример будет и простейшей иллюстрацией для понятия "собственные значения и собственные векторы оператора".