2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Ротор. векторный анализ
Сообщение19.10.2014, 18:38 
Доброго времени суток, никак не удается посчитать ротор от следующего поля:

$\overrightarrow{A}=\frac{(\overrightarrow{k},\overrightarrow{r})}{r} \cdot \frac{[\overrightarrow{r} \times \overrightarrow{k}]}{[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2}$

$\overrightarrow{k}$ - const.

Разобьем поле на скалярную составляющую $\varphi $ и векторную $\overrightarrow{c}$


$\varphi = \frac{(\overrightarrow{k}\overrightarrow{r})}{r}\frac{1}{[\overrightarrow{k} \times \overrightarrow{k} ]^2 + a^2}$
$\overrightarrow{c}=[\overrightarrow{r} \times \overrightarrow{k}]$




$[\triangledown\times  \overrightarrow{A}]= [\triangledown\times  \overrightarrow{c} \varphi] = \varphi[\triangledown \times \overrightarrow{c}] + [\triangledown\varphi \times \overrightarrow{c}]$

Вычислим 1 слагаемое:
$\varphi [\triangledown \times \overrightarrow{c}] = \varphi[\triangledown \times [\overrightarrow{r} \times \overrightarrow{k}]] = \varphi(\overrightarrow{r}\operatorname{div}(\overrightarrow{k}) - \overrightarrow{k}\operatorname{div}(\overrightarrow{r})+ \left( {\vec k,\vec \nabla } \right)\vec r - \left( {\vec r,\vec \nabla } \right)\vec k)  =\varphi( 0 -3\overrightarrow{k} +\overrightarrow{k} -0) = -2\varphi \overrightarrow{k} = -\frac{2\overrightarrow{k}(\overrightarrow{k},\overrightarrow{r})}{r} \cdot \frac{1}{[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2}$

вычислим второе слагаемое, для начала найдем $\triangledown \varphi$

$\triangledown \varphi  \equiv \frac{\mathrm{d} \varphi}{\mathrm{d} \overrightarrow{r}} =\frac{\mathrm{d} }{\mathrm{d} \overrightarrow{r}} ( \frac{(\overrightarrow{k},\overrightarrow{r})}{r} \cdot \frac{1}{[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2})=\frac{\mathrm{d} }{\mathrm{d} \overrightarrow{r}} ( \frac{(\overrightarrow{k},\overrightarrow{r})^}{\sqrt{\overrightarrow{r}^2}} \cdot \frac{1}{\overrightarrow{k}^2\overrightarrow{r}^2-(\overrightarrow{k}\overrightarrow{r})^2+a^2}) = \frac{(\overrightarrow{k},\overrightarrow{r})}{\sqrt{\overrightarrow{r}^2}}\frac{-2\overrightarrow{k}^2\overrightarrow{r}+2(\overrightarrow{k}\overrightarrow{r})\overrightarrow{k}}{(\overrightarrow{k}^2\overrightarrow{r}^2-(\overrightarrow{k}\overrightarrow{r})^2+a^2)^2}=-\frac{2(\overrightarrow{k},\overrightarrow{r})[\overrightarrow{k} \times [\overrightarrow{r} \times \overrightarrow{k} ]]}{r([\overrightarrow{r} \times \overrightarrow{k}]^2+a^2)^2}$

тогда

$[\triangledown \varphi \times \overrightarrow{c}] =- [\frac{2(\overrightarrow{k},\overrightarrow{r})[\overrightarrow{k} \times [\overrightarrow{r} \times \overrightarrow{k} ]]}{r[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2} \times \overrightarrow{c}] =- \frac{2(\overrightarrow{k},\overrightarrow{r})}{r[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2} [[\overrightarrow{k} \times [\overrightarrow{r} \times \overrightarrow{k} ]]\times \overrightarrow{c}]=-\frac{2(\overrightarrow{k},\overrightarrow{r})}{r([\overrightarrow{r} \times \overrightarrow{k}]^2+a^2)^2} [[\overrightarrow{k} \times [\overrightarrow{r} \times \overrightarrow{k} ]]\times [\overrightarrow{r} \times \overrightarrow{k}]]=-\frac{2(\overrightarrow{k},\overrightarrow{r})\overrightarrow{k}[\overrightarrow{r} \times \overrightarrow{k}]^2}{r([\overrightarrow{r} \times \overrightarrow{k}]^2+a^2)^2}$

Тогда
$[\triangledown\times  \overrightarrow{A}]= -\frac{2(\overrightarrow{k},\overrightarrow{r})\overrightarrow{k}[\overrightarrow{r} \times \overrightarrow{k}]^2}{r([\overrightarrow{r} \times \overrightarrow{k}]^2+a^2)^2}-\frac{2\overrightarrow{k}(\overrightarrow{k},\overrightarrow{r})}{r} \cdot \frac{1}{[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2} $

Но правильный ответ

$[\triangledown\times  \overrightarrow{A}]=\frac{\overrightarrow{r}}{r^3}\frac{[\overrightarrow{r} \times \overrightarrow{k}]^2}{[\overrightarrow{r} \times \overrightarrow{k}]^2 + a^2} - \frac{2\overrightarrow{k}(\overrightarrow{k}\overrightarrow{r})}{r}\frac{a^2}{([\overrightarrow{k} \times \overrightarrow{k} ]^2 + a^2)^2}$

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 18:44 
Аватара пользователя
chem_victory в сообщении #920954 писал(а):
Разобьем поле на скалярную составляющую $\varphi $ и векторную $\overrightarrow{c}$

Энто как?

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 18:46 
Утундрий в сообщении #920958 писал(а):
chem_victory в сообщении #920954 писал(а):
Разобьем поле на скалярную составляющую $\varphi $ и векторную $\overrightarrow{c}$

Энто как?


ну, чтоб вычислять проще было.

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 18:48 
Аватара пользователя
Так само разложение приведите.

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 18:51 
Утундрий в сообщении #920961 писал(а):
Так само разложение приведите.

обновил шапку

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 18:58 
Аватара пользователя
chem_victory в сообщении #920954 писал(а):
Вычислим 1 слагаемое:
$\varphi [\triangledown \times \overrightarrow{c}] = \varphi[\triangledown \times [\overrightarrow{r} \times \overrightarrow{k}]] = \varphi(\overrightarrow{r}\operatorname{div}(\overrightarrow{k}) - \overrightarrow{k}\operatorname{div}(\overrightarrow{r})+ \frac{d\overrightarrow{r}}{d\overrightarrow{k}} - \frac{d\overrightarrow{k}}{d\overrightarrow{r}})  =\varphi( 0 -3\overrightarrow{k} +\overrightarrow{k} -0) = -2\varphi \overrightarrow{k} = -\frac{2\overrightarrow{k}(\overrightarrow{k},\overrightarrow{r})}{r} \cdot \frac{1}{[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2}$

А это откуда выползло?
$\frac{d\overrightarrow{r}}{d\overrightarrow{k}} - \frac{d\overrightarrow{k}}{d\overrightarrow{r}}$

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 19:03 
Утундрий в сообщении #920967 писал(а):
chem_victory в сообщении #920954 писал(а):
Вычислим 1 слагаемое:
$\varphi [\triangledown \times \overrightarrow{c}] = \varphi[\triangledown \times [\overrightarrow{r} \times \overrightarrow{k}]] = \varphi(\overrightarrow{r}\operatorname{div}(\overrightarrow{k}) - \overrightarrow{k}\operatorname{div}(\overrightarrow{r})+ \frac{d\overrightarrow{r}}{d\overrightarrow{k}} - \frac{d\overrightarrow{k}}{d\overrightarrow{r}})  =\varphi( 0 -3\overrightarrow{k} +\overrightarrow{k} -0) = -2\varphi \overrightarrow{k} = -\frac{2\overrightarrow{k}(\overrightarrow{k},\overrightarrow{r})}{r} \cdot \frac{1}{[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2}$

А это откуда выползло?

Ротор произведения полей.

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 19:06 
Аватара пользователя
chem_victory в сообщении #920954 писал(а):
$\overrightarrow{k}$ - const

P.S. Ещё и первый член вычислен неправильно...

 
 
 
 Posted automatically
Сообщение19.10.2014, 19:15 
Аватара пользователя
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Причина переноса: формулы не оформлены $\TeX$ом

chem_victory
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
См. также тему Что такое карантин, и что нужно делать, чтобы там оказаться.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Возвращено

_________________
Deggial всегда следит за Вами

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 19:16 
Утундрий в сообщении #920970 писал(а):
chem_victory в сообщении #920954 писал(а):
$\overrightarrow{k}$ - const

P.S. Ещё и первый член вычислен неправильно...


Это учтено в 4 слагаемом.
не могли бы вы обосновать, почему это неверно?

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 19:19 
Аватара пользователя
Ответил в ЛС.

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 19:26 
*поменял обозначение, приводящее к путанице.

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 19:28 
Аватара пользователя
chem_victory в сообщении #920954 писал(а):
$\triangledown \varphi  \equiv \frac{\mathrm{d} \varphi}{\mathrm{d} \overrightarrow{r}} =\frac{\mathrm{d} }{\mathrm{d} \overrightarrow{r}} ( \frac{(\overrightarrow{k},\overrightarrow{r})}{r} \cdot \frac{1}{[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2})=\frac{\mathrm{d} }{\mathrm{d} \overrightarrow{r}} ( \frac{(\overrightarrow{k},\overrightarrow{r})^}{\sqrt{\overrightarrow{r}^2}} \cdot \frac{1}{\overrightarrow{k}^2\overrightarrow{r}^2-(\overrightarrow{k}\overrightarrow{r})^2+a^2}) = \frac{(\overrightarrow{k},\overrightarrow{r})}{\sqrt{\overrightarrow{r}^2}}\frac{-2\overrightarrow{k}^2\overrightarrow{r}+2(\overrightarrow{k}\overrightarrow{r})\overrightarrow{k}}{(\overrightarrow{k}^2\overrightarrow{r}^2-(\overrightarrow{k}\overrightarrow{r})^2+a^2)^2}=-\frac{2(\overrightarrow{k},\overrightarrow{r})[\overrightarrow{k} \times [\overrightarrow{r} \times \overrightarrow{k} ]]}{r([\overrightarrow{r} \times \overrightarrow{k}]^2+a^2)^2}$

Ага, вот оно. Первый член продифференцировать забыли.

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 19:31 
Утундрий в сообщении #920982 писал(а):
chem_victory в сообщении #920954 писал(а):
$\triangledown \varphi  \equiv \frac{\mathrm{d} \varphi}{\mathrm{d} \overrightarrow{r}} =\frac{\mathrm{d} }{\mathrm{d} \overrightarrow{r}} ( \frac{(\overrightarrow{k},\overrightarrow{r})}{r} \cdot \frac{1}{[\overrightarrow{r} \times \overrightarrow{k}]^2+a^2})=\frac{\mathrm{d} }{\mathrm{d} \overrightarrow{r}} ( \frac{(\overrightarrow{k},\overrightarrow{r})^}{\sqrt{\overrightarrow{r}^2}} \cdot \frac{1}{\overrightarrow{k}^2\overrightarrow{r}^2-(\overrightarrow{k}\overrightarrow{r})^2+a^2}) = \frac{(\overrightarrow{k},\overrightarrow{r})}{\sqrt{\overrightarrow{r}^2}}\frac{-2\overrightarrow{k}^2\overrightarrow{r}+2(\overrightarrow{k}\overrightarrow{r})\overrightarrow{k}}{(\overrightarrow{k}^2\overrightarrow{r}^2-(\overrightarrow{k}\overrightarrow{r})^2+a^2)^2}=-\frac{2(\overrightarrow{k},\overrightarrow{r})[\overrightarrow{k} \times [\overrightarrow{r} \times \overrightarrow{k} ]]}{r([\overrightarrow{r} \times \overrightarrow{k}]^2+a^2)^2}$

Ага, вот оно. Первый член продифференцировать забыли.


Неа, он нулю равен после дифирицирования, потому просто вынес.

 
 
 
 Re: Ротор. векторный анализ
Сообщение19.10.2014, 19:40 
Аватара пользователя
chem_victory в сообщении #920983 писал(а):
он нулю равен после дифирицирования

(*дифференцирования)

Отнюдь:
$$\vec \nabla \left( {\frac{{\vec r}}{r}} \right) = \frac{{\vec \nabla \vec r}}{r} - \vec r\frac{{\vec \nabla r}}{{r^2 }} = \frac{{\hat 1}}{r} - \frac{{\vec r\vec r}}{{r^3 }}, \qquad k_s \vec \nabla \left( {\frac{{x_s }}{r}} \right) = \frac{1}{r}\left( {\hat 1 - \frac{{\vec r\vec r}}{{r^2 }}} \right) \cdot \vec k \equiv \frac{{\vec k_ \bot  }}{r}$$

 
 
 [ Сообщений: 24 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group