2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В раздел Пургаторий будут перемещены спорные темы (преимущественно псевдонаучного характера), относительно которых администрация приняла решение о нецелесообразности продолжения дискуссии.
Причинами такого решения могут быть, в частности: безграмотность, бессодержательность или псевдонаучный характер темы, нарушение автором принципов ведения дискуссии, принятых на форуме.
Права на добавление сообщений имеют только Модераторы и Заслуженные участники форума.



Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 13  След.
 
 Вероятностная оценка распределения простых чисел
Сообщение11.09.2014, 17:04 


23/02/12
3451
В работе буду использовать вероятностные оценки.
Знаю некоторое предубеждение против вероятностных оценок. Постараюсь его рассеять в этой работе.

Известна одна из форм асимптотического закона простых чисел:
$\pi(x) \sim x/\ln(x)$, (1)
где $\pi(x)$ - количество простых чисел, не превосходящих натуральное число $x$.

Еще в работах Чебышева делается попытка оценки величины: $r(x)=|\pi(x)-x/\ln(x)|$ (2).

В теореме 324 (Бухштаб) показана справедливость оценки:
$ax/\ln(x)<\pi(x)<bx/\ln(x)$. (3)
Чебышев показал, что $a=0,921,b=1,106$. В дальнейших работах были получены значения $a,b$ более близкие к 1.

Из оценки (3) следует:
$(a-1)x/\ln(x)<\pi(x)-x/\ln(x)<(b-1)x/\ln(x)$. (4)

Однако оценки (4) являются весьма грубыми вида:
$r(x)<O(x/\ln(x))$. (5)

Асимптотический закон о простых числах дает более точную оценку для величины $\pi(x)$ с использованием интегрального логарифма:
$\pi(x) \sim Li(x)$. (6)

При предположении справедливости гипотезы Римана точность формулы (6) дается выражением:
$|\pi(x)-Li(x)|<O(x^{1/2}\cdot \ln(x))$. (7)

Существует также формула Лежандра:
$\pi(x) \sim x/\ln(x)+B$ (8).
Но формула (8) менее точна, чем формула (6).

Возникает вопрос - можно ли получить лучшую вероятностную оценку для точности формулы $\pi(x)=x/\ln(x)+x \cdot o(1/ln(x))$ (9)?

Рассмотрим следующую вероятностную модель.

Пусть имеется $x$- шаров, неразличимых на ощупь. Пронумеруем их последовательными натуральными числами от 1 до $x$ и положим в урну.
Выберем из урны на удачу один шар и если его номер принадлежит заранее выбранной целочисленной, положительной, инъективной последовательности, то будем считать это событие "успехом", а если номер шара не принадлежит выбранной последовательности, то будем считать это событие "неудачей". Предположим, что вероятность успешного события равна $p$. Соответственно вероятность неудачного события будет $1-p$.
Введем случайную величину $I_1$ индикатор успешности события. Значение $I_1=1$, если был успех, $I_1=0$, если - неудача.
Вернем шар в урну, перемешаем шары в урне и выберем на удачу 2-ой шар из урны и если его номер принадлежит выбранной последовательности, то присвоим случайной величине $I_2=1$. Если не принадлежит, то - $I_2=0$. Затем вернем 2-ой шар в урну и.т.д. Проделаем это $x$ раз. Таким образом, мы получим последовательность случайных величин - индикаторов успешности событий: $I_1, I_2, ...I_x$.
Математическое ожидание случайной величины $I_i$ равно:
$M(I_i)=p \cdot 1+(1-p) \cdot 0=p$ (10).
Дисперсия случайной величины $I_i$ равна:
$D(I_i)=(1-p)^2\cdot p+p^2(1-p)=p(1-p)$. (11)

Рассмотрим случайную величину, равную сумме величин: $I(x)=\sum_{i = 1}^{x}{I_i}$ (12).
Обратим внимание, что $I(x)$ является количеством членов выбранной целочисленной, положительной, инъективной последовательности, не превышающих значение $x$.

Определим характеристики $I(x)$.
Ввиду линейности математических ожиданий, математическое ожидание $I(x)$ на основании (10) и (12) равно:
$M(I(X))=M(\sum_{i = 1}^{x}{I_i})=\sum_{i = 1}^{x}{M(I_i)}= x\cdot p$. (13)
Ввиду независимости случайных величин $I_i$ дисперсия $I(x)$ на основании (11) и (12) равна:
$D(I(x))=D(\sum_{i = 1}^{x}{I_i})=\sum_{i = 1}^{x}{D(I_i)}= x \cdot p(1-p)$. (14)

Итак мы имеем взаимно независимые, одинаково распределенные случайные величины $I_1,I_2,...I_x$, для которых ограничены дисперсии. Поэтому для случайной величины их суммы $I(x)=\sum_{i = 1}^{x}{I_i}$ справедлива центральная предельная теорема:
$\lim_{x \to \infty}{P(|I(x)-M(I(x))|<C\sqrt{D(I(x)})=F(C)$, (15)
где $P( )$ - вероятность выполнения события, указанного в скобках, а $F(C)$ - функция стандарного нормального распределения в точке С.

Подставим полученные характеристики случайной величины $I(x)$ - (13), (14) в выражение (15):
$\lim_{x \to \infty}{P(|I(x)-x \cdot p|<C\sqrt{x \cdot p(1-p)})=F(C)$. (16)

Формулу (16) можно получить другим путем, если учесть, что случайная величина $I(x)$ имеет биномиальное распределение, используя частный случай центральной предельной теоремы - теорему Муавра-Лапласа.
Теорему Муавра-Лапласа можно сформулировать следующим образом. Для биномиального закона распределения существует предельное распределение при количестве испытаний, стремящемся к бесконечности ${(x \to \infty)}$ и это предельное распределение является нормальным.

Формулу (16) можно сравнить с неравенством Чебышева.
Запишем формулу Чебышева для данного случая:
$P(|I(x)-x \cdot p|<C\sqrt{x \cdot p(1-p)})>1-1/C^2$. (17)
Например, если $C=3$, то по формуле (16) получим, что вероятность указанного события равна $F(3)=0,9973$, а по формуле (17) вероятность данного события равна $1-1/9=0,8889$.
Таким образом, формула (16) значительно точнее формулы (17). Это связано с тем, что формула (17) не учитывает закон распределения случайной величины.

При $C=4$ вероятность, определяемая по формуле (16) равна $F(4)=0,99993$, т.е событие $|I(x)-x \cdot p|<C\sqrt{x \cdot p(1-p)}$ при $C=4$ является практически достоверным событием.
На основании свойств нормального распределения, с ростом $C$, величина $F(C)$ быстро стремится к 1.
Таким образом, можно выбрать такое значение $C$, чтобы вероятность события: $|I(x)-x \cdot p|<C\sqrt{x \cdot p(1-p)}$ (18) была сколь угодно близка к 1.
Это является преимуществом вероятностных оценок, так как дает выбор конкретного значения $C$. Например, оценки (18), по сравнению с формулой (7), по которой оценку точности вообще нельзя проводить.

Последовательность простых чисел является целочисленной, положительной, строго возрастающей, т.е. инъективной.
Ранее было доказано, что для такой последовательности $f(n)$ ее плотность на интервале натурального ряда [$A,B$), определяемая по формуле:
$\pi(f,A,B)/(B-A)$ (19) (где $\pi(f,A,B)$ - количество членов последовательности $f(n)$ на интервале [$A,B$) ), является конечной вероятностной мерой.
Также было показано, что для последовательности простых чисел, на основании асимптотического закона простых чисел и формулы (19), вероятность, что наудачу выбранное натуральное число из интервала $[1,x)$, является простым, равна: $p=1/\ln(x)+o(1/\ln(x))$. (20)

Формулу (16), для последовательности простых чисел, на основании (20), можно записать в виде:
$\lim_{x \to \infty}{P(|\pi(x)-x \cdot (1/\ln(x)+o(1/\ln(x))|$ $<C\sqrt{x \cdot (1/\ln(x)+o(1/\ln(x))(1-1/\ln(x)-o(1/\ln(x))})=F(C)$, (21) где $\pi(x)$ - количество простых чисел, не превосходящих натуральное число $x$.

На основании (21) при ${x \to \infty}$ можно выбрать такое значение $C$, чтобы вероятность события: $|\pi(x)-x \cdot (1/\ln(x)+o(1/\ln(x))|<C\sqrt{x \cdot (1/\ln(x)+o(1/\ln(x))(1-1/\ln(x)-o(1/\ln(x)))}$ (22) была сколь угодно близка к 1.

Проанализируем формулу (22). Она дает оценку сверху для отклонения количества простых чисел, не превышающих $x$ - $\pi(x)$, от значения $x/\ln(x)+x \cdot o(1/\ln(x))$, т.е. оценку точности для формулы (9).
Саму оценку можно преобразовать к виду: $C\sqrt{x(1/\ln(x)-1/\ln^2(x)-o(1/\ln(x))/\ln(x)-o(1/\ln^2(x)))}$. (23)
Для (23) выполняется неравенство: $C\sqrt{x(1/\ln(x)-1/\ln^2(x)-o(1/\ln(x))/\ln(x)-o(1/\ln^2(x)))}<C\sqrt{x/\ln(x)}$. (24)
Таким образом, на основании (24), при ${x \to \infty}$ можно выбрать такое значение $C$, чтобы вероятность события: $|\pi(x)-x \cdot (1/\ln(x)+o(1/\ln(x))|<C\sqrt{x/\ln(x)}$ (25) была сколь угодно близка к 1.

На основании наилучшего приближения для $\pi(x)$, установленного еще Чебышевым, получим, что наилучшим приближением, для $o(1/\ln(x))$ является функция: $1/\ln^2(x)+...+(r-1)!/\ln^r(x)$. (26)
Подставляя (26) в (25) получаем: $|\pi(x)-Li(x)|<C\sqrt{x/\ln(x)}$. (27)

Известно, что эквивалентной формулировкой гипотезы Римана является соотношение: $|\pi(x)-Li(x)|<\sqrt{x}\ln(x)/8\pi$ (28) при $x>2656$.
Ранее я уже говорил о преимуществе вероятностных оценок, что можно выбрать конкретное значение $C$ в зависимости от требуемой вероятности события.
Если сравнивать оценки (27) и (28), то при $C=3$ (с вероятностью $0,9973$) оценки (27) и (28) примерно совпадают. Оценка (27) примерно на 30% выше. Однако, если подставить (26) в (23), то разница сокращается до 20%.
При $C=2$ (с вероятностью $0,9545$) оценка (27) лучше оценки (28), начиная с $x=10^6$.

Отсюда вытекает, что при $x>10^6$ справедливо следующее соотношение для оценок точности, доказанных вероятностными методами, и оценкой точности, полученной при предположении верности гипотезы Римана: $2\sqrt{x/\ln(x)}<\sqrt{x}\ln(x)/8\pi<3\sqrt{x/\ln(x)}$. (29)
Постоянные $C=2$ в нижней оценке и $C=3$ в верхней оценке в формуле (29) можно уточнить с учетом дробных значений.

Буду благодарен за замечания и предложения участников форума.

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение11.09.2014, 17:10 


28/11/11
2884
Зачем анонс?

 Профиль  
                  
 
 Posted automatically
Сообщение11.09.2014, 18:00 
Супермодератор
Аватара пользователя


20/11/12
5728
 i  Тема перемещена из форума «Дискуссионные темы (М)» в форум «Карантин»
Причина переноса: отсутствует предмет обсуждения

vicvolf, сформулируйте предмет обсуждения. Сейчас его нет.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 Профиль  
                  
 
 Posted automatically
Сообщение19.09.2014, 15:29 
Супермодератор
Аватара пользователя


20/11/12
5728
 i  Тема перемещена из форума «Карантин» в форум «Дискуссионные темы (М)»
Возвращено


vicvolf в сообщении #906686 писал(а):
наилучшим приближением, для $o(1/\ln(x))$ является функция: $1/\ln^2(x)+...+(r-1)!/\ln^r(x)$. (26)
Это просто ложное высказывание.

vicvolf в сообщении #906686 писал(а):
$2\sqrt{x/\ln(x)}<\sqrt{x}\ln(x)/8\pi<3\sqrt{x/\ln(x)}$. (29)
Вы утверждаете, что $2<\ln^{3/2}(x)/8\pi<3$?

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение19.09.2014, 16:39 


23/02/12
3451
Согласен с замечаниями Deggial. Сделал исправления.

В работе буду использовать вероятностные оценки.
Знаю некоторое предубеждение против вероятностных оценок. Постараюсь его рассеять в этой работе.

Известна одна из форм асимптотического закона простых чисел:
$\pi(x) \sim x/\ln(x)$, (1)
где $\pi(x)$ - количество простых чисел, не превосходящих натуральное число $x$.

Еще в работах Чебышева делается попытка оценки величины: $r(x)=|\pi(x)-x/\ln(x)|$ (2).

В теореме 324 (Бухштаб) показана справедливость оценки:
$ax/\ln(x)<\pi(x)<bx/\ln(x)$. (3)
Чебышев показал, что $a=0,921,b=1,106$. В дальнейших работах были получены значения $a,b$ более близкие к 1.

Из оценки (3) следует:
$(a-1)x/\ln(x)<\pi(x)-x/\ln(x)<(b-1)x/\ln(x)$. (4)

Однако оценки (4) являются весьма грубыми вида:
$r(x)<O(x/\ln(x))$. (5)

Асимптотический закон о простых числах дает более точную оценку для величины $\pi(x)$ с использованием интегрального логарифма:
$\pi(x) \sim Li(x)$. (6)

При предположении справедливости гипотезы Римана точность формулы (6) дается выражением:
$|\pi(x)-Li(x)|<O(x^{1/2}\cdot \ln(x))$. (7)

Существует также формула Лежандра:
$\pi(x) \sim x/\ln(x)+B$ (8).
Но формула (8) менее точна, чем формула (6).

Возникает вопрос - можно ли получить лучшую вероятностную оценку для точности формулы $\pi(x)=x/\ln(x)+x \cdot o(1/ln(x))$ (9)?

Рассмотрим следующую вероятностную модель.

Пусть имеется $x$- шаров, неразличимых на ощупь. Пронумеруем их последовательными натуральными числами от 1 до $x$ и положим в урну.
Выберем из урны на удачу один шар и если его номер принадлежит заранее выбранной целочисленной, положительной, инъективной последовательности, то будем считать это событие "успехом", а если номер шара не принадлежит выбранной последовательности, то будем считать это событие "неудачей". Предположим, что вероятность успешного события равна $p$. Соответственно вероятность неудачного события будет $1-p$.
Введем случайную величину $I_1$ индикатор успешности события. Значение $I_1=1$, если был успех, $I_1=0$, если - неудача.
Вернем шар в урну, перемешаем шары в урне и выберем на удачу 2-ой шар из урны и если его номер принадлежит выбранной последовательности, то присвоим случайной величине $I_2=1$. Если не принадлежит, то - $I_2=0$. Затем вернем 2-ой шар в урну и.т.д. Проделаем это $x$ раз. Таким образом, мы получим последовательность случайных величин - индикаторов успешности событий: $I_1, I_2, ...I_x$.
Математическое ожидание случайной величины $I_i$ равно:
$M(I_i)=p \cdot 1+(1-p) \cdot 0=p$ (10).
Дисперсия случайной величины $I_i$ равна:
$D(I_i)=(1-p)^2\cdot p+p^2(1-p)=p(1-p)$. (11)

Рассмотрим случайную величину, равную сумме величин: $I(x)=\sum_{i = 1}^{x}{I_i}$ (12).
Обратим внимание, что $I(x)$ является количеством членов выбранной целочисленной, положительной, инъективной последовательности, не превышающих значение $x$.

Определим характеристики $I(x)$.
Ввиду линейности математических ожиданий, математическое ожидание $I(x)$ на основании (10) и (12) равно:
$M(I(X))=M(\sum_{i = 1}^{x}{I_i})=\sum_{i = 1}^{x}{M(I_i)}= x\cdot p$. (13)
Ввиду независимости случайных величин $I_i$ дисперсия $I(x)$ на основании (11) и (12) равна:
$D(I(x))=D(\sum_{i = 1}^{x}{I_i})=\sum_{i = 1}^{x}{D(I_i)}= x \cdot p(1-p)$. (14)

Итак мы имеем взаимно независимые, одинаково распределенные случайные величины $I_1,I_2,...I_x$, для которых ограничены дисперсии. Поэтому для случайной величины их суммы $I(x)=\sum_{i = 1}^{x}{I_i}$ справедлива центральная предельная теорема:
$\lim_{x \to \infty}{P(|I(x)-M(I(x))|<C\sqrt{D(I(x)})=F(C)$, (15)
где $P( )$ - вероятность выполнения события, указанного в скобках, а $F(C)$ - функция стандарного нормального распределения в точке С.

Подставим полученные характеристики случайной величины $I(x)$ - (13), (14) в выражение (15):
$\lim_{x \to \infty}{P(|I(x)-x \cdot p|<C\sqrt{x \cdot p(1-p)})=F(C)$. (16)

Формулу (16) можно получить другим путем, если учесть, что случайная величина $I(x)$ имеет биномиальное распределение, используя частный случай центральной предельной теоремы - теорему Муавра-Лапласа.
Теорему Муавра-Лапласа можно сформулировать следующим образом. Для биномиального закона распределения существует предельное распределение при количестве испытаний, стремящемся к бесконечности ${(x \to \infty)}$ и это предельное распределение является нормальным.

Формулу (16) можно сравнить с неравенством Чебышева.
Запишем формулу Чебышева для данного случая:
$P(|I(x)-x \cdot p|<C\sqrt{x \cdot p(1-p)})>1-1/C^2$. (17)
Например, если $C=3$, то по формуле (16) получим, что вероятность указанного события равна $F(3)=0,9973$, а по формуле (17) вероятность данного события равна $1-1/9=0,8889$.
Таким образом, формула (16) значительно точнее формулы (17). Это связано с тем, что формула (17) не учитывает закон распределения случайной величины.

При $C=4$ вероятность, определяемая по формуле (16) равна $F(4)=0,99993$, т.е событие $|I(x)-x \cdot p|<C\sqrt{x \cdot p(1-p)}$ при $C=4$ является практически достоверным событием.
На основании свойств нормального распределения, с ростом $C$, величина $F(C)$ быстро стремится к 1.
Таким образом, можно выбрать такое значение $C$, чтобы вероятность события: $|I(x)-x \cdot p|<C\sqrt{x \cdot p(1-p)}$ (18) была сколь угодно близка к 1.
Это является преимуществом вероятностных оценок, так как дает выбор конкретного значения $C$. Например, оценки (18), по сравнению с формулой (7), по которой оценку точности вообще нельзя проводить.

Последовательность простых чисел является целочисленной, положительной, строго возрастающей, т.е. инъективной.
Ранее было доказано, что для такой последовательности $f(n)$ ее плотность на интервале натурального ряда [$A,B$), определяемая по формуле:
$\pi(f,A,B)/(B-A)$ (19) (где $\pi(f,A,B)$ - количество членов последовательности $f(n)$ на интервале [$A,B$) ), является конечной вероятностной мерой.
Также было показано, что для последовательности простых чисел, на основании асимптотического закона простых чисел и формулы (19), вероятность, что наудачу выбранное натуральное число из интервала $[1,x)$, является простым, равна: $p=1/\ln(x)+o(1/\ln(x))$. (20)

Формулу (16), для последовательности простых чисел, на основании (20), можно записать в виде:
$\lim_{x \to \infty}{P(|\pi(x)-x \cdot (1/\ln(x)+o(1/\ln(x))|$ $<C\sqrt{x \cdot (1/\ln(x)+o(1/\ln(x))(1-1/\ln(x)-o(1/\ln(x))})=F(C)$, (21) где $\pi(x)$ - количество простых чисел, не превосходящих натуральное число $x$.

На основании (21) при ${x \to \infty}$ можно выбрать такое значение $C$, чтобы вероятность события: $|\pi(x)-x \cdot (1/\ln(x)+o(1/\ln(x))|<C\sqrt{x \cdot (1/\ln(x)+o(1/\ln(x))(1-1/\ln(x)-o(1/\ln(x)))}$ (22) была сколь угодно близка к 1.

Проанализируем формулу (22). Она дает оценку сверху для отклонения количества простых чисел, не превышающих $x$ - $\pi(x)$, от значения $x/\ln(x)+x \cdot o(1/\ln(x))$, т.е. оценку точности для формулы (9).
Саму оценку можно преобразовать к виду: $C\sqrt{x(1/\ln(x)-1/\ln^2(x)-o(1/\ln(x))/\ln(x)-o(1/\ln^2(x)))}$. (23)
Для (23) выполняется неравенство: $C\sqrt{x(1/\ln(x)-1/\ln^2(x)-o(1/\ln(x))/\ln(x)-o(1/\ln^2(x)))}<C\sqrt{x/\ln(x)}$. (24)
Таким образом, на основании (24), при ${x \to \infty}$ можно выбрать такое значение $C$, чтобы вероятность события: $|\pi(x)-x \cdot (1/\ln(x)+o(1/\ln(x))|<C\sqrt{x/\ln(x)}$ (25) была сколь угодно близка к 1.

На основании наилучшего приближения для $\pi(x)$, установленного еще Чебышевым, получим, что наилучшим приближением, для $o(1/\ln(x))$ является функция: $1/\ln^2(x)+...+(r-1)!/\ln^r(x)+O(1/\ln^{r+1}(x))$. (26)
Подставляя (26) в (25) получаем: $|\pi(x)-Li(x)|<C\sqrt{x/\ln(x)}$. (27)

Известно, что эквивалентной формулировкой гипотезы Римана является соотношение: $|\pi(x)-Li(x)|<\sqrt{x}\ln(x)/8\pi$ (28) при $x>2656$.
Ранее я уже говорил о преимуществе вероятностных оценок, что можно выбрать конкретное значение $C$ в зависимости от требуемой вероятности события.
Если сравнивать оценки (27) и (28), то при $C=3$ (с вероятностью $0,9973$) оценки (27) и (28) примерно совпадают. Оценка (27) немного выше. Однако, если подставить (26) в (23), то разница сокращается.
При $C=2$ (с вероятностью $0,9545$) оценка (27) ниже оценки (28), начиная с $x=10^6$.

Буду благодарен за замечания и предложения участников форума.

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение21.09.2014, 22:49 


23/02/12
3451
Хотел бы спросить участников форума. Может кто-нибудь встречал полученные результаты в литературе? Если да, то, пожалуйста, дайте ссылку.

Теперь продолжу.
При $x<10^7$ наиболее близкая оценка (27) к (28) достигается при $C=2,55$ (с вероятностью $F(C)=0,9892$).

В вероятностной оценке события существует своя специфика - событие происходит с определенной вероятностью.
Например, если $P=0,95$, то в 5 случаях из 100 событие (27) может не выполняться. Если $x$ растет, то при той же вероятности $P=0,95$ количество случаев невыполнения события (27) возрастает. Если $x=10^7$, то при $P=0,95$ условие (27) будет нарушаться в 50000 случаях, что может быть недопустимо. Поэтому надо зафиксировать допустимое число случаев невыполнения события (27).

Допустимым числом случаев не выполнения события (27) для $x=10^7$ при наиболее близкой оценке (27) к (28) является $d=(1-F(C))x=(1-0,9892)10^7=1,08 \cdot 10^5$ (29).
Поэтому при росте $x$ должно возрастать значение $C$.
Выбор значения $C$ должен проводиться в зависимости от $x$ на основании неравенства: $x(1-F(C))=d$ (30).
Из (30) следует: $C=F^{-1}(1-d/x)$, (31) где $F^{-1}()$- обратная функция к стандартному нормальному распределению.

Наиболее близкая оценка (27) к (28) получается при $C$, определяемой по формуле (31) с $d=1,08 \cdot 10^5$.
Таким образом, при $x=10^8$ получаем $C=3,3$, а для $x=10^9$ получаем $C=3,9$, наиболее близкие оценки к (28).

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение23.09.2014, 15:56 


23/02/12
3451
Сделаю уточнение сообщения от 19.09.14.

Формулу (16), для последовательности простых чисел, на основании (20), для больших $x$, можно записать в виде:
$P(|\pi(x)-x \cdot (1/\ln(x)+o(1/\ln(x))|$ $<C\sqrt{x \cdot (1/\ln(x)+o(1/\ln(x))(1-1/\ln(x)-o(1/\ln(x))}) \approx F(C)$, (21) где $\pi(x)$ - количество простых чисел, не превосходящих натуральное число $x$.
Можно взять значение $x$ больше любого наперед заданного положительного числа. При этом, чем больше $x$, тем более точно выполняется равенство вероятности события значению $F(C)$ в формуле (21).

На основании (21) можно выбрать такое значение $C$, чтобы вероятность события: $|\pi(x)-x \cdot (1/\ln(x)+o(1/\ln(x))|<C\sqrt{x \cdot (1/\ln(x)+o(1/\ln(x))(1-1/\ln(x)-o(1/\ln(x)))}$ (22) была сколь угодно близка к 1.

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение28.09.2014, 21:17 


23/02/12
3451
Анализ вероятностной модели 1

Рассмотренную в начале темы вероятностную модель назовем вероятностной моделью 1.

В данной модели шар, после того, как его выбрали, снова возвращается в корзину.

Поэтому в этой модели существует вероятность выбрать один и тот же шар несколько раз.

В реальной ситуации, когда подсчитывается количество членов, принадлежащих последовательности на интервале натурального ряда от 1 до $x$, такой ситуации не бывает.

Поэтому требуется уточнение вероятностной модели 1.

Рассмотрим вероятностную модель 2, которая свободна от указанного недостатка.

Продолжение следует.

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение29.09.2014, 14:05 


23/02/12
3451
Вероятностная модель 2

Возьмем $x$ шаров неразличимых на ощупь и пронумеруем их последовательными натуральными числами от $1$ до $x$.
Разложим пронумерованные шары в $x$ урн, в каждую урну по одному шару. В какой урне лежит шар с определенным номером не известно.

Достанем шар из 1-ой урны и если его номер принадлежит определенной целочисленной, положительной, инъективной последовательности $f(n)$ (успех), то присвоим случайной величине индикатора успеха значение $I_1=1$ с вероятностью $p_1$ и значение $I_1=0$ (неудача), если не принадлежит последовательности $f(n)$ с вероятностью $1-p_1$.
Выберем шар из 2-ой урны и если его номер принадлежит последовательности $f(n)$, то присвоим случайной величине индикатора успеха значение $I_2=1$ с вероятностью $p_2$ и значение $I_2=0$, если не принадлежит последовательности $f(n)$ с вероятностью $1-p_2$ и.т.д. $x$ раз.
Таким образом, мы получим последовательность случайных величин - индикаторов успеха: $I_1, I_2,...I_x$.

Хочу обратить внимание, что в этой вероятностной модели выбираются все $x$ шаров, притом каждый только один раз. Также в модели допускается различная вероятность успеха и неудачи при выборке шара из разных урн. Следовательно, указанная вероятностная модель свободна от недостатка модели 1.

Продолжение следует

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение30.09.2014, 16:56 


23/02/12
3451
Найдем характеристики случайных величин вероятностной модели 2.

Математическое ожидание случайной величины индикатора успеха $I_i$ равно:
$M(I_i)=1 \cdot p_i+ 0 \cdot (1-p_i)=p_i$. (32)

Дисперсия случайной величины индикатора успеха $I_i$ равна:
$D(I_i)=(1-p_i)^2 \cdot p_i + (p_i)^2 \cdot (1-p_i)=p_i(1-p_i)$. (33)

Рассмотрим случайную величину: $I(x)=\sum_{i = 1}^{x}{I_i}$. (34)
Обратим внимание, что $I(x)$ является количеством членов выбранной целочисленной, положительной, инъективной последовательности, не превышающих значение $x$.

Определим характеристики $I(x)$.
Ввиду линейности математических ожиданий, математическое ожидание $I(x)$ на основании (32) и (34) равно:
$M(I(X))=M(\sum_{i = 1}^{x}{I_i})=\sum_{i = 1}^{x}{M(I_i)}= \sum_{i = 1}^{x}{p_i}$. (35)

Ввиду независимости случайных величин $I_i$ дисперсия $I(x)$ на основании (33) и (34) равна:
$D(I(x))=D(\sum_{i = 1}^{x}{I_i})=\sum_{i = 1}^{x}{D(I_i)}= \sum_{i = 1}^{x}{p_i(1-p_i)}=\sum_{i = 1}^{x}{p_i}-\sum_{i = 1}^{x}{(p_i)^2}$. (36)

Продолжение следует

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение30.09.2014, 18:41 


07/08/14
4231
может чем поможет (таблицей не выходит):

первая колонка - разница между двумя соседними простыми числами (например $3-2$ или $11-7$)
вторая колонка - количество разниц в первых $1000$-х простых числах в штуках (например $5-3, 13-11, 19-17,... \rightarrow 174$ штуки или иначе вероятность появления разницы $2$ между двумя простыми числами в массиве из $1000$ элементов - $\frac{174}{1000}=17,4\%$)

$1 \rightarrow 1$

$2 \rightarrow 174$

$3 \rightarrow 0$

$4 \rightarrow 169$

$5 \rightarrow 0$

$6 \rightarrow 244$

$7 \rightarrow 0$

$8 \rightarrow 83$

$9 \rightarrow 0$

$10 \rightarrow 100$

$11 \rightarrow 0$

$12 \rightarrow 74$

$13 \rightarrow 0$

$14 \rightarrow 42$

$15 \rightarrow 0$

$16 \rightarrow 26$

$17 \rightarrow 0$

$18 \rightarrow 34$

$19 \rightarrow 0$

$20 \rightarrow 10$

$21 \rightarrow 0$

$22 \rightarrow 12$

$23 \rightarrow 0$

$24 \rightarrow 12$

$25 \rightarrow 0$

$26 \rightarrow 3$

$27 \rightarrow 0$

$28 \rightarrow 4$

$29 \rightarrow 0$

$30 \rightarrow 8$

$31 \rightarrow 0$

$32 \rightarrow 1$

$33 \rightarrow 0$

$34 \rightarrow 1$

-- 30.09.2014, 19:04 --

верно ли, что разницы равной простому числу $>2$ появиться не может?

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение30.09.2014, 21:02 
Заслуженный участник
Аватара пользователя


23/07/05
18039
Москва
upgrade в сообщении #914050 писал(а):
верно ли, что разницы равной простому числу $>2$ появиться не может?
Дык, простые числа $>2$ нечётные, поэтому разность соседних простых чисел чётная, за исключением $3-2=1$. А чётных простых чисел $>2$ не бывает.

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение01.10.2014, 13:57 


23/02/12
3451
upgrade в сообщении #914050 писал(а):
может чем поможет:
первая колонка - разница между двумя соседними простыми числами (например $3-2$ или $11-7$)
вторая колонка - количество разниц в первых $1000$-х простых числах в штуках (например $5-3, 13-11, 19-17,... \rightarrow 174$ штуки или иначе вероятность появления разницы $2$ между двумя простыми числами в массиве

Это распределение интервалов между простыми числами, а меня интересует распределение количества простых чисел. Точнее - вероятностная оценка отклонения количества простых чисел, не превосходящих $x$, от $Li(x)$.

Продолжение

Таким образом, случайная величина $I(x)$ распределена биномиально.

Теперь используем теорему Муавра-Лапласа: для биномиального распределения вероятностей существует предельное распределение вероятностей и это предельное распределения является нормальным.

Поэтому на основании формулы (15), (35), (36) получим:

$\lim_{x \to \infty}{P(|I(x)-\sum_{i = 1}^{x}{p_i}|<C\sqrt{\sum_{i = 1}^{x}{p_i}(1-p_i)})=C\sqrt{\sum_{i = 1}^{x}{p_i}-\sum_{i = 1}^{x}{(p_i)^2}}=F(C)$, (37) где $F(C)$ - значение функции стандартного нормального распределения в точке $C$.

Для больших $x$ формулу (37) можно записать в виде:

$P(|I(x)-\sum_{i = 1}^{x}{p_i}|<C\sqrt{\sum_{i = 1}^{x}{p_i}-\sum_{i = 1}^{x}{(p_i)^2}}\approx F(C)$. (38)

На основании свойств нормального распределения, с ростом $x$, величина быстро стремится к 1.

Таким образом, можно выбрать такое значение $C$, чтобы вероятность (38) была сколь угодно близка к 1.

Продолжение следует

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение01.10.2014, 14:40 


07/08/14
4231

(Оффтоп)

vicvolf в сообщении #914243 писал(а):
а меня интересует распределение количества простых чисел.

Ок
распределение для первых 1000 простых чисел:
1. порядковый номер простого числа разделить на значение простого числа (количество простых чисел на количество натуральных)
2. вычитаем количество простых чисел из $x/\ln(x)$, где $x$ - простое число (оно же количество натуральных) - находим погрешность
3. находим среднее арифметическое п 2
4. это $-62,33717210637080000$
5. уточняем формулу для первых $1000$ $\pi(x)=x/\ln(x)+62,33717210637080000
$

правильно я понимаю что вы ищете вид функции для получения $62,33717210637080000$ ?
так как с ростом порядкового номера простого числа, ошибка вот такой имеет вид (ордината - количество простых чисел, абсцисса - разница между количеством предсказанным формулой и ординатой)
Изображение

-- 01.10.2014, 15:02 --

еще возможен такой вариант (если анализ ошибки предсказания делать отношением предсказания к истинному значению)
для первых $1000$ $\pi(x)=\frac{x}{0,87050996953622\cdot \ln(x)}$

 Профиль  
                  
 
 Re: Вероятностная оценка распределения простых чисел
Сообщение01.10.2014, 15:23 
Заслуженный участник


08/04/08
8564
upgrade в сообщении #914253 писал(а):
$\pi(x)=\frac{x}{0,87050996953622\cdot \ln(x)}$
Гипотеза Римана - знаете такую?
Из нее следует не доказанное пока $|\pi(x)-\int\limits_2^x\frac{dt}{\ln t}|=O(x^{1/2+\epsilon})$.
Можете глянуть в Вики: http://ru.wikipedia.org/wiki/%D2%E5%EE% ... 8%F1%E5%EB чтобы испугаться.

Кроме того, обратите внимание на раздел и его правила: здесь определенного качества люди пытаются доказать что-то недоказанное. Ваш текст здесь - оффтоп.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 188 ]  На страницу 1, 2, 3, 4, 5 ... 13  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: nimepe


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group