Последний раз редактировалось Anton_Peplov 26.08.2014, 17:33, всего редактировалось 1 раз.
Как построить функцию, ряд Тейлора которой расходится (хотя бы в одной точке, можно выбрать удобную)? А функцию, ряд Тейлора которой расходится во всех точках (существуют ли вообще, кстати, такие функции)?
Ясно, что для этого числитель n-го члена ряда должен расти быстрее, чем n!. Последовательность, растущую быстрее, чем n!, построить легко (хоть с использованием формулы Стирлинга, хоть без), но как построить такую функцию, чтобы члены этой последовательности получались из ее n-ной производной в какой-либо точке? Для элементарных функций возрастание получается за счет геометрической и/или арифметической прогрессии. Но очевидно, что факториал в конце концов обгонит любую геометрическую, а тем более арифметическую прогрессию.
И связанный с этим вопрос: каковы необходимые и достаточные условия сходимости ряда Тейлора? Необходимые и достаточные условия сходимости именно к функции, по которой он построен (в какой-нибудь еще формулировке кроме "остаточный член стремится к нулю при n стремящемся к бесконечности") ? Ответ "аналитичность функции" не принимается, ибо это тавтология: функция и называется аналитической, если к ней сходится ее ряд Тейлора. Можно еще дать не необходимые, но достаточные и удобные, т.к. необходимые и достаточные обычно неудобны (пример: очень тяжело проверить, удовлетворяет ли ряд критерию Коши, зато легко - удовлетворяет ли он какому-нибудь там признаку Д'Аламбера).
Можно дать и просто ссылку на литературу. Но в стандартных курсах матана (а-ля Ильин и Позняк) эти вопросы не рассматриваются.
|