2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Расходящийся ряд Тейлора
Сообщение26.08.2014, 16:52 
Аватара пользователя
Как построить функцию, ряд Тейлора которой расходится (хотя бы в одной точке, можно выбрать удобную)? А функцию, ряд Тейлора которой расходится во всех точках (существуют ли вообще, кстати, такие функции)?

Ясно, что для этого числитель n-го члена ряда должен расти быстрее, чем n!. Последовательность, растущую быстрее, чем n!, построить легко (хоть с использованием формулы Стирлинга, хоть без), но как построить такую функцию, чтобы члены этой последовательности получались из ее n-ной производной в какой-либо точке? Для элементарных функций возрастание получается за счет геометрической и/или арифметической прогрессии. Но очевидно, что факториал в конце концов обгонит любую геометрическую, а тем более арифметическую прогрессию.

И связанный с этим вопрос: каковы необходимые и достаточные условия сходимости ряда Тейлора? Необходимые и достаточные условия сходимости именно к функции, по которой он построен (в какой-нибудь еще формулировке кроме "остаточный член стремится к нулю при n стремящемся к бесконечности") ? Ответ "аналитичность функции" не принимается, ибо это тавтология: функция и называется аналитической, если к ней сходится ее ряд Тейлора. Можно еще дать не необходимые, но достаточные и удобные, т.к. необходимые и достаточные обычно неудобны (пример: очень тяжело проверить, удовлетворяет ли ряд критерию Коши, зато легко - удовлетворяет ли он какому-нибудь там признаку Д'Аламбера).

Можно дать и просто ссылку на литературу. Но в стандартных курсах матана (а-ля Ильин и Позняк) эти вопросы не рассматриваются.

 
 
 
 Re: Расходящийся ряд Тейлора
Сообщение26.08.2014, 16:56 
Ф. Олвер, Введение в асимптотические методы и специальные функции

 
 
 
 Re: Расходящийся ряд Тейлора
Сообщение26.08.2014, 17:39 
Аватара пользователя
В предметном указателе книги "Ф. Олвер, Введение в асимптотические методы и специальные функции" ни Тейлор, ни его ряд даже не упоминаются.

 
 
 
 Re: Расходящийся ряд Тейлора
Сообщение26.08.2014, 17:44 
стр. 11, формула (1.05) - пример расходящегося ряда

 
 
 
 Re: Расходящийся ряд Тейлора
Сообщение26.08.2014, 17:48 
Аватара пользователя
Теорема. Для любой последовательности чисел $a_n$ всегда найдется $C^\infty$ функция $f(x)$ т.ч. $f^{(n)}(0)=a_n$ (для всех $n$ здесь и ниже).

Теорема. $f(x)$ аналитична на $[-a,a]$ т. и т.т.к. $|f^{(n)}(x)|\le C_b^n n!$ для всех $x\in [-b,b]$ при любом $b<a$.

 
 
 
 Re: Расходящийся ряд Тейлора
Сообщение26.08.2014, 17:53 
Аватара пользователя
UPD: в самой точке дифференцирования ряд по построению сходится. А вот возможен ли ряд, который расходится всюду, кроме точки дифференцирования?

-- 26.08.2014, 19:10 --

Red_Herring в сообщении #900338 писал(а):
Теорема. Для любой последовательности чисел $a_n$ всегда найдется $C^\infty$ функция $f(x)$ т.ч. $f^{(n)}(0)=a_n$ (для всех $n$ здесь и ниже).

Теорема. $f(x)$ аналитична на $[-a,a]$ т. и т.т.к. $|f^{(n)}(x)|\le C_b^n n!$ для всех $x\in [-b,b]$ при любом $b<a$.



Хорошие теоремы, красивые. А теперь хорошо бы ссылку на учебник, в котором их можно найти, т. к. в своей способности доказать их самостоятельно я очень сомневаюсь.

 
 
 
 Re: Расходящийся ряд Тейлора
Сообщение26.08.2014, 18:13 
Аватара пользователя
Такие штуки лучше смотреть у Гелбаума, в "контрпримерах в анализе".
И точно, в гл. 5, п. 24 приведена бесконечно дифференцируемая везде функция, ряд Тейлора которой сходится только в одной точке.

 
 
 
 Re: Расходящийся ряд Тейлора
Сообщение26.08.2014, 18:35 
Red_Herring в сообщении #900338 писал(а):
Теорема. Для любой последовательности чисел $a_n$ всегда найдется $C^\infty$ функция $f(x)$ т.ч. $f^{(n)}(0)=a_n$ (для всех $n$ здесь и ниже).

wall-e в сообщении #728275 писал(а):
Помогите разобраться с задачкой.
доказать, что для любой числовой последовательности $\{ a_n \}_0^\infty $ найдется такая функция $\phi \in D$, что $\phi ^{(n)} (0)= a_n$ при всех $n=0,1,2,...$


Oleg Zubelevich в сообщении #728380 писал(а):
Пусть $f(x)=1$ при $|x|\le 1,\quad f\in\mathcal{D}(\mathbb{R})$

$$\phi(x)=\sum_{k=0}^\infty\frac{f(x\cdot\max\{1,|a_k|\})}{k!}a_kx^k$$

 
 
 
 Re: Расходящийся ряд Тейлора
Сообщение26.08.2014, 18:54 
Аватара пользователя
gris в сообщении #900347 писал(а):
Такие штуки лучше смотреть у Гелбаума, в "контрпримерах в анализе".
И точно, в гл. 5, п. 24 приведена бесконечно дифференцируемая везде функция, ряд Тейлора которой сходится только в одной точке.


Ай, драгоценная книга! Ай, спасибо!

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group