Я покажу на примере пункта а) для одного из случаев энергии , остальные делайте сами
![$\[E < 0\]$ $\[E < 0\]$](https://dxdy-04.korotkov.co.uk/f/3/a/9/3a9855233f44a89794026080a565ae2282.png)
- тут у нас финитное движение, точки поворота
![$\[{x_{2,3}}\]$ $\[{x_{2,3}}\]$](https://dxdy-01.korotkov.co.uk/f/0/f/c/0fc2ba0c46400f184cd1f1674560d6fb82.png)
указаны в показанном вами решении.
Собственно самое трудное - взять интеграл
![$\[\int\limits_{{x_0}}^x {\frac{{dx}}{{\sqrt { - \left| E \right| - U(x)} }}} = \int\limits_{{x_0}}^x {\frac{{dx}}{{\sqrt { - \left| E \right| - A{e^{ - 2\alpha x}} + 2A{e^{ - \alpha x}}} }}} \]$ $\[\int\limits_{{x_0}}^x {\frac{{dx}}{{\sqrt { - \left| E \right| - U(x)} }}} = \int\limits_{{x_0}}^x {\frac{{dx}}{{\sqrt { - \left| E \right| - A{e^{ - 2\alpha x}} + 2A{e^{ - \alpha x}}} }}} \]$](https://dxdy-04.korotkov.co.uk/f/7/0/9/709f4cba43865a89c1dc13134482283582.png)
Вся суть состоит в том, что бы привести его к виду
![$\[\int {\frac{{d\xi }}{{\sqrt {{a^2} - {\xi ^2}} }}} = \arcsin \frac{\xi }{a}\]$ $\[\int {\frac{{d\xi }}{{\sqrt {{a^2} - {\xi ^2}} }}} = \arcsin \frac{\xi }{a}\]$](https://dxdy-03.korotkov.co.uk/f/e/f/d/efd3ad3b980f1570878f449e9393b7c882.png)
Повозимся с подкоренным выражением
![$\[\begin{array}{l}
- \left| E \right| - A{e^{ - 2\alpha x}} + 2A{e^{ - \alpha x}} = \frac{{{e^{ - 2\alpha x}}}}{{\left| E \right|}}( - {\left| E \right|^2}{e^{2\alpha x}} - A\left| E \right| + 2A\left| E \right|{e^{\alpha x}} + {A^2} - {A^2}) = \\
= \frac{{{e^{ - 2\alpha x}}}}{{\left| E \right|}}[A(A - \left| E \right|) - ({\left| E \right|^2}{e^{2\alpha x}} - 2A\left| E \right|{e^{\alpha x}} + {A^2})] = \\
= \frac{{{e^{ - 2\alpha x}}}}{{\left| E \right|}}[{(\sqrt {A(A - \left| E \right|)} )^2} - {(\left| E \right|{e^{\alpha x}} - A)^2}]
\end{array}\]$ $\[\begin{array}{l}
- \left| E \right| - A{e^{ - 2\alpha x}} + 2A{e^{ - \alpha x}} = \frac{{{e^{ - 2\alpha x}}}}{{\left| E \right|}}( - {\left| E \right|^2}{e^{2\alpha x}} - A\left| E \right| + 2A\left| E \right|{e^{\alpha x}} + {A^2} - {A^2}) = \\
= \frac{{{e^{ - 2\alpha x}}}}{{\left| E \right|}}[A(A - \left| E \right|) - ({\left| E \right|^2}{e^{2\alpha x}} - 2A\left| E \right|{e^{\alpha x}} + {A^2})] = \\
= \frac{{{e^{ - 2\alpha x}}}}{{\left| E \right|}}[{(\sqrt {A(A - \left| E \right|)} )^2} - {(\left| E \right|{e^{\alpha x}} - A)^2}]
\end{array}\]$](https://dxdy-02.korotkov.co.uk/f/1/0/c/10c4a998df93d80e060461c8386bb76282.png)
Получили
![$\[\int\limits_{{x_0}}^x {\frac{{dx}}{{\sqrt { - \left| E \right| - A{e^{ - 2\alpha x}} + 2A{e^{ - \alpha x}}} }}} = \int\limits_{{x_0}}^x {\frac{{\sqrt {\left| E \right|} {e^{\alpha x}}dx}}{{\sqrt {{{(\sqrt {A(A - \left| E \right|)} )}^2} - {{(\left| E \right|{e^{\alpha x}} - A)}^2}} }}} \]$ $\[\int\limits_{{x_0}}^x {\frac{{dx}}{{\sqrt { - \left| E \right| - A{e^{ - 2\alpha x}} + 2A{e^{ - \alpha x}}} }}} = \int\limits_{{x_0}}^x {\frac{{\sqrt {\left| E \right|} {e^{\alpha x}}dx}}{{\sqrt {{{(\sqrt {A(A - \left| E \right|)} )}^2} - {{(\left| E \right|{e^{\alpha x}} - A)}^2}} }}} \]$](https://dxdy-03.korotkov.co.uk/f/a/f/8/af8950f117ae6a28f6df6710da34e77a82.png)
Обозначаем
![$\[a = \sqrt {A(A - \left| E \right|)} \]$ $\[a = \sqrt {A(A - \left| E \right|)} \]$](https://dxdy-01.korotkov.co.uk/f/4/9/9/499dce301aa006a990d79aa19dfd2a4782.png)
и
![$\[\xi = \left| E \right|{e^{\alpha x}} - A\]$ $\[\xi = \left| E \right|{e^{\alpha x}} - A\]$](https://dxdy-04.korotkov.co.uk/f/b/4/a/b4a7a919bcdb2537963c6eba762bc5f082.png)
Тогда
![$\[d\xi = \alpha \left| E \right|{e^{\alpha x}}\]$ $\[d\xi = \alpha \left| E \right|{e^{\alpha x}}\]$](https://dxdy-04.korotkov.co.uk/f/f/5/e/f5ee44b0076997ab7f186ab8cfe339bb82.png)
, т.е. в числителе не хватает
![$\[\alpha \sqrt {\left| E \right|} \]$ $\[\alpha \sqrt {\left| E \right|} \]$](https://dxdy-03.korotkov.co.uk/f/a/9/7/a97db4e1bdc1c7898c1da14cde2d95eb82.png)
.
Домножаем и приводим к требуему виду
![$\[\frac{1}{{\alpha \sqrt {\left| E \right|} }}\int\limits_{{x_0}}^x {\frac{{\alpha \left| E \right|{e^{\alpha x}}dx}}{{\sqrt {{{(\sqrt {A(A - \left| E \right|)} )}^2} - {{(\left| E \right|{e^{\alpha x}} - A)}^2}} }}} = \frac{1}{{\alpha \sqrt {\left| E \right|} }}\int\limits_{{x_0}}^x {\frac{{d\xi }}{{\sqrt {{a^2} - {\xi ^2}} }}} \]$ $\[\frac{1}{{\alpha \sqrt {\left| E \right|} }}\int\limits_{{x_0}}^x {\frac{{\alpha \left| E \right|{e^{\alpha x}}dx}}{{\sqrt {{{(\sqrt {A(A - \left| E \right|)} )}^2} - {{(\left| E \right|{e^{\alpha x}} - A)}^2}} }}} = \frac{1}{{\alpha \sqrt {\left| E \right|} }}\int\limits_{{x_0}}^x {\frac{{d\xi }}{{\sqrt {{a^2} - {\xi ^2}} }}} \]$](https://dxdy-04.korotkov.co.uk/f/3/c/2/3c2802c39927733748283ad6cf9685df82.png)
Отсюда
![$\[t = \sqrt {\frac{m}{2}} \int\limits_{{x_0}}^x {\frac{{dx}}{{\sqrt { - \left| E \right| - U(x)} }}} = \frac{1}{\alpha }\sqrt {\frac{m}{{2\left| E \right|}}} (\arcsin \frac{{\left| E \right|{e^{\alpha x}} - A}}{{\sqrt {A(A - \left| E \right|)} }} - \arcsin \frac{{\left| E \right|{e^{\alpha {x_0}}} - A}}{{\sqrt {A(A - \left| E \right|)} }})\]$ $\[t = \sqrt {\frac{m}{2}} \int\limits_{{x_0}}^x {\frac{{dx}}{{\sqrt { - \left| E \right| - U(x)} }}} = \frac{1}{\alpha }\sqrt {\frac{m}{{2\left| E \right|}}} (\arcsin \frac{{\left| E \right|{e^{\alpha x}} - A}}{{\sqrt {A(A - \left| E \right|)} }} - \arcsin \frac{{\left| E \right|{e^{\alpha {x_0}}} - A}}{{\sqrt {A(A - \left| E \right|)} }})\]$](https://dxdy-02.korotkov.co.uk/f/1/f/1/1f1170ec506d86671fd9aaff1244ae8882.png)
Обозначим
![$\[\arcsin \frac{{\left| E \right|{e^{\alpha {x_0}}} - A}}{{\sqrt {A(A - \left| E \right|)} }} = C\]$ $\[\arcsin \frac{{\left| E \right|{e^{\alpha {x_0}}} - A}}{{\sqrt {A(A - \left| E \right|)} }} = C\]$](https://dxdy-02.korotkov.co.uk/f/1/f/c/1fcbae2052db4ecf5bccc24ab49a917e82.png)
. Теперь просто выражаем координату
![$\[\frac{{\left| E \right|{e^{\alpha x}} - A}}{{\sqrt {A(A - \left| E \right|)} }} = \sin (\alpha \sqrt {\frac{{2\left| E \right|}}{m}} t + C)\]$ $\[\frac{{\left| E \right|{e^{\alpha x}} - A}}{{\sqrt {A(A - \left| E \right|)} }} = \sin (\alpha \sqrt {\frac{{2\left| E \right|}}{m}} t + C)\]$](https://dxdy-04.korotkov.co.uk/f/3/9/0/390f2d1f7d37b5f6a81ff85b6c43c4c682.png)
![$\[x = \frac{1}{\alpha }\ln \frac{{\sqrt {A(A - \left| E \right|)} \sin (\alpha \sqrt {\frac{{2\left| E \right|}}{m}} t + C) + A}}{{\left| E \right|}}\]$ $\[x = \frac{1}{\alpha }\ln \frac{{\sqrt {A(A - \left| E \right|)} \sin (\alpha \sqrt {\frac{{2\left| E \right|}}{m}} t + C) + A}}{{\left| E \right|}}\]$](https://dxdy-01.korotkov.co.uk/f/c/e/c/cecd39aba8ebe10f49ddcbfb623c43a682.png)
В полном виде
![$\[x = \frac{1}{\alpha }\ln \frac{{\sqrt {A(A - \left| E \right|)} \sin (\alpha \sqrt {\frac{{2\left| E \right|}}{m}} t + \arcsin \frac{{\left| E \right|{e^{\alpha {x_0}}} - A}}{{\sqrt {A(A - \left| E \right|)} }}) + A}}{{\left| E \right|}}\]$ $\[x = \frac{1}{\alpha }\ln \frac{{\sqrt {A(A - \left| E \right|)} \sin (\alpha \sqrt {\frac{{2\left| E \right|}}{m}} t + \arcsin \frac{{\left| E \right|{e^{\alpha {x_0}}} - A}}{{\sqrt {A(A - \left| E \right|)} }}) + A}}{{\left| E \right|}}\]$](https://dxdy-03.korotkov.co.uk/f/a/1/2/a12b733e7e24fc230871ed1fe110095082.png)
(то, что тут синус а не косинус роли не играет, просто тогда
![$\[C \to C + \frac{\pi }{2}\]$ $\[C \to C + \frac{\pi }{2}\]$](https://dxdy-03.korotkov.co.uk/f/6/d/2/6d206691018ce629b2c24461bd0b551582.png)
)
P.S.Может всё можно провернуть и быстрее, но мне что то в голову это не пришло.