1. Топология в пространстве Шварца ненормируема (т.е. не может быть задана с помощью одной нормы)
2. Существуют сепарабельные метризуемые локально выпуклые пространства, топология в которых определяется счётным набором евклидовых норм, и в которых нет базиса. Примеры ядерных метризуемых пространств построены Митягиным, Джаковым, Зобиным.
3. Пространстве Шварца ядерно и нём базис существует. Под руками у меня есть только обзор Митягина "Аппроксимативная размерность и базисы в ядерных пространствах" (Успехи Математических Наук, № 16, вып. 4, параграф 7):

Биортогональная последовательность функционалов

Тогда для любой функции

ряд

сходится в топологии пространства

к

Добавлено позже
Это утверждение доказывается в книге Саймона-Рида. Идея доказательства - базис образуют собственные функции некоторого дифференциального оператора. Деталей не помню и книги под руками нет. Ещё можно посмотреть книгу Фогта-Майзе. В ней формулируются условия существования базиса.