bot писал(а):
K6Dn7 писал(а):
В первой задаче никакой опечатки нет. Вот, смотрите:
http://www.mathnet.spb.ru/univ/spbgu/2006.htm И в самом деле... Ну тогда крутовата. Абитуриенты нынче больше способны к вычислениям, чем к рассуждениям. Боюсь, что совсем мало нашлось абитуриентов, которые нашли халявный промежуток [-1, 0), не говоря уже об этом
Я не могу решить ещё одну задачу с экономического факультета, СПбГУ 2006 год. Я даже не могу записать систему. Может, конечно, это простая задача, но...
Условие задачи:
Девочки делили конфеты, а мальчики — пряники. Первая девочка взяла x конфет и
остатка, вторая взяла 2x конфет и
нового остатка, третья взяла 3x конфет и
нового остатка и т. д. Первый мальчик взял y пряников и
остатка, второй взял 2y пряников и
нового остатка, и т. д. Когда последние девочка и мальчик взяли свои доли по тому же правилу, оказалось, что все конфеты разделены поровну, все пряники тоже разделены поровну. Во сколько раз пряников было больше, чем конфет, если известно, что x:y =2:3?
Я пытался решить задачу, выписывал систему, но она такая большая и, главное, я не вижу закономерности, как её упростить и вообще что делать? Мне здесь не сделать даже первый шаг.
И ещё вопрос: Решите уравнение arctg(
)+arctg(x-1)=
При решение я получил три корня:
0,
и
Я понял, что первый корень не подходит - я просто подставил в исходное уравнение. Но мне непонятно, как проверить, что второй корень тоже не подходит. Ведь если взять слева и справа тангенс, то равенство получится верным. И ООФ второй корень тоже вроде удовлетворяет.
И вообще, как без проверки понять, какие корни в подобных уровнениях лишние? Например, как понять сразу, без проверки, что 0 - лишний корень? Скажем, для ирроцианальных уровнений можно написать ОДЗ и ещё пару условий, и ничего проверять не надо. А как быть с обратными тригонометрическими уровнениями и тем более, неравенствами?