2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12  След.
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 14:25 
Аватара пользователя
prof.uskov в сообщении #861625 писал(а):
А вот тут извините, я вижу здесь пользователей, которые гораздо лучше меня осведомлены в некоторых вопросах математики и физики и только.

В общем, это даёт ещё некоторое (смутное и поверхностное) представление о том, что такое математика и физика вообще. И извините, этого смутного и поверхностного - достаточно, чтобы увидеть, что вас просто обманули, обсчитали, никакой математики вы не знаете ну... не то чтобы в принципе, но в общем, с таким багажом только где-то на первом курсе не стыдно. На середине второго - уже стыдно, уже есть пробелы.

Извините. Меня учили говорить правду в лицо. Вы поморщитесь, но привыкнете, и будете более адекватно представлять себе мир. А если не сказать - так и останетесь с вредной иллюзией.

prof.uskov в сообщении #861625 писал(а):
Мало того, есть интересная тенденция, тех кто здесь не шифруется традиционно пинают по полной...

Вы ошибаетесь :-) Здесь одинаково пинают и тех, кто шифруется, и тех, кто не шифруется :-)

prof.uskov в сообщении #861668 писал(а):
Я утверждаю несколько другое: для реализаций на практике используется, хорошо если, 10% от того математического аппарата, что наработан.

Ну дык, с этим позорным фактом никто не спорит. Мне знакомы области, где используется хорошо если 1 %.

Но это не аргумент ни за что хорошее. Я вам уже говорил про подсчёт сдачи в магазине. Вы предпочли проигнорировать.

prof.uskov в сообщении #861668 писал(а):
Пример с тем же рядом Тейлора, сперва долго доказывали, что я что-то там не понимаю, как его писать в тензорной форм, не постиг всех глубин тензорного анализа, и как я при этом живу, а потом те же люди с удивлением спрашивали, а зачем он собственно мне сдался, что я с ним буду делать, ведь представить программно можно и ряд в скалярной форме.

К сожалению, это ложь. Вам никто не писал "представить программно можно и ряд в скалярной форме". В покомпонентной - это не в скалярной.

prof.uskov в сообщении #861668 писал(а):
Именно по этому, я и знаю плохо эти разделы математики, что это еще нужно извратиться, чтобы их применить и получить какое-нибудь улучшение.

Надо "извратиться", и понять эти разделы. А уж когда вы их знаете и понимаете - применения сами всюду в глаза лезут.

Такое ваше мнение выглядит намёком на то, что вы никогда никаких разделов математики не знали и не понимали. Потому что как только что-то узнаёшь - происходит как я написал.

g______d в сообщении #861672 писал(а):
Ну так написание статьи или диссертации – это не реализация на практике. Это теория, разве нет? Практика – это конкретная программа или прибор.

У технарей в диссертациях есть глава про реализацию и практические результаты. Это обязательное требование, без этого не защищают. Так что, диссертация - тоже включает в себя конкретную программу или прибор.

g______d в сообщении #861672 писал(а):
Я сильно подозреваю, что авторы книг про многомерные матрицы в своё время просто тензоры не выучили.

Где "подозреваю", видимо, сказано только из деликатности :-)

prof.uskov в сообщении #861675 писал(а):
Крон тоже не выучил тензоры... :mrgreen: :facepalm: (Крон Г. Тензорный анализ сетей)
Там в начале про многомерные матрицы, называемые n-матрицами, а под тензорами автор понимает переход на качественно новый уровень анализа, и даже утверждает, что тензоры существуют независимо от матриц или их индексной записи...

Да, не выучил, - именно потому, что он пишет про тензоры такую чушь.

Я вам, кстати, не Крона, а Анго рекомендовал. Он такой чуши не пишет.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 14:26 
Аватара пользователя
prof.uskov в сообщении #861675 писал(а):
даже утверждает, что тензоры существуют независимо от матриц или их индексной записи...


Ну это как-то сомнительно, либо он что-то странное имеет в виду.

В любом случае, тот набор значков, что возникает в формуле Тейлора, – именно тензор, даже если различать тензоры и многомерные матрицы. Потому что он подчиняется закону преобразования при линейных заменах координат.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 14:27 
Аватара пользователя

(Оффтоп)

Otta в сообщении #861696 писал(а):
У Вас специфическая выборка знакомых. Все мои знакомые из МГУ защищались до 25-30. Не овладевая "технологией написания".

У технарей, действительно, есть "своя технология написания диссертаций". Отличающаяся от математической.

Искренне жаль аспирантов этого prof.uskov, которые получили "потолок к 40 годам", когда у другого руководителя (и по другой теме) могли бы защититься намного раньше, а возможно, и больше раз.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 14:29 
Аватара пользователя

(Оффтоп)

Otta в сообщении #861696 писал(а):
prof.uskov
У Вас специфическая выборка знакомых. Все мои знакомые из МГУ защищались до 25-30. Не овладевая "технологией написания". :facepalm:

Так я и не обобщаю, видимо, умные пошли к умным, а мне что осталось... :-(

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 14:33 
Аватара пользователя

(Оффтоп)

prof.uskov в сообщении #861695 писал(а):
Что могу про них сказать? Да, знания хорошие, обучаемые вполне. Но технологией написание научных работ и диссертаций никто из них не овладел, несмотря на все мои старания, так что их потолок - ученая степень кандидата наук к сорока годам.


Специальность ВАК 42.06.66 "Технология написания научных работ и диссертаций".

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 15:57 
g______d в сообщении #861699 писал(а):
это как-то сомнительно, либо он что-то странное имеет в виду
Да нечего тут иметь в виду, кроме известного факта, что тензор - это геометрический объект, не требующий введения координат для определения. Ну и вообще, понятно, что путать (многомерные) матрицы и тензоры некрасиво. А то потом бывает сложно обосновать, почему "ранг тензора" не имеет отношения к "рангу матрицы".

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 16:15 
Аватара пользователя
warlock66613 в сообщении #861755 писал(а):
g______d в сообщении #861699 писал(а):
это как-то сомнительно, либо он что-то странное имеет в виду
Да нечего тут иметь в виду, кроме известного факта, что тензор - это геометрический объект, не требующий введения координат для определения. Ну и вообще, понятно, что путать (многомерные) матрицы и тензоры некрасиво.

Да, да. Вот такое я у Крона и читал... и еще в нескольких источниках...

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 16:23 
Аватара пользователя
warlock66613 в сообщении #861755 писал(а):
Ну и вообще, понятно, что путать (многомерные) матрицы и тензоры некрасиво.

Совершенно верно. Поскольку нет вообще никаких "многомерных матриц", путать их с чем-то существующим - некрасиво.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение11.05.2014, 21:35 
Аватара пользователя
prof.uskov в сообщении #861668 писал(а):
А с этим разве кто-то спорил? Я утверждаю несколько другое: для реализаций на практике используется, хорошо если, 10% от того математического аппарата, что наработан.
Ну так. 10% материала в одной области на практике, 10% - в другой, так и бОльшая часть теории пригодится.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение12.05.2014, 00:06 
Аватара пользователя
Munin в сообщении #861689 писал(а):
prof.uskov в сообщении #861621 писал(а):
Полистайте Вы хоть одну книжку по теории автоматического управления, потом будете говорить, что там все тривиально.

Ну, я листал. Там действительно всё тривиально.

Munin, собственно, одна из основных проблем теории управления (послужившая причиной ее выделения в отдельное научное направление) - синтез оптимального (по определенным критериям) робастного (малочувствительного к изменению объекта) закона управления (регулятора) САУ с обратной связью. Если у нас тут так все просто, бросьте вашу математику и физику, решите эту задачу, и на всегда войдете в историю науки. Ваши регуляторы будут использоваться повсеместно, от систем управления ракет и атомных реакторов, до домашних утюгов и холодильников. А если вы не в состоянии предложить ничего нового, тогда нечего говорить, что все тривиально.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение12.05.2014, 00:16 

(Оффтоп)

prof.uskov в сообщении #862046 писал(а):
повсеместно, от систем управления ракет и атомных реакторов, до домашних утюгов и холодильников
К такой цели лучше не стремиться — соответствующие специализации такого универсального регулятора вряд ли будут практичнее, чем специализированные регуляторы.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение12.05.2014, 00:19 
Аватара пользователя
prof.uskov в сообщении #862046 писал(а):
Если у нас тут так все просто, бросьте вашу математику и физику, решите эту задачу, и на всегда войдете в историю науки.

Зачем мне бросать математику и физику? :-)

prof.uskov в сообщении #862046 писал(а):
собственно, одна из основных проблем теории управления (послужившая причиной ее выделения в отдельное научное направление) - синтез оптимального (по определенным критериям) робастного (малочувствительного к изменению объекта) закона управления (регулятора) САУ с обратной связью.

В такой формулировке - это просто не задача, которую можно решить раз и навсегда. Ну а методы её решения в зависимости от поставленных условий должны быть даже вам известны.

prof.uskov в сообщении #862046 писал(а):
А если вы не в состоянии предложить ничего нового, тогда нечего говорить, что все тривиально.

Я вот не в состоянии предложить ничего нового в таблице умножения. Но разве там есть что-то нетривиальное?

Я понимаю, вам очень тяжело расстаться с мифом о глубине и математичности вашего образования. Но вы должны стремиться принять эту правду, а не отбрыкиваться.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение12.05.2014, 00:27 
Аватара пользователя
Munin в сообщении #862058 писал(а):
prof.uskov в сообщении #862046 писал(а):
А если вы не в состоянии предложить ничего нового, тогда нечего говорить, что все тривиально.

Я вот не в состоянии предложить ничего нового в таблице умножения. Но разве там есть что-то нетривиальное?

Где-то читал, когда Максвелл решил заниматься физикой, его отговаривали, ведь после Ньютона все законы уже открыты, остались лишь мелкие детали... :-) Так и вы, полистав учебник...
На самом деле, там работы непочатый край на несколько поколений.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение12.05.2014, 01:11 
Аватара пользователя
prof.uskov в сообщении #861766 писал(а):
Да, да. Вот такое я у Крона и читал... и еще в нескольких источниках...


Ок, допустим, что некоторые авторы называют наборы чисел, свалившиеся с неба, многомерными матрицами, а не тензорами. Но в чём тогда смысл объединять их именно в такую таблицу?

Умножение обычных матриц – это композиция линейных преобразований. Как только мы придаём смысл умножению обычных матриц и действию матрицы на вектор, таблицы чисел превращаются в линейные преобразования.

Аналогично с тензорами: если есть признак, по которому произвольный набор чисел объединён в "многомерную матрицу", и придан смысл тензорным операциям, то есть и соответствующий тензор.

В частности, как я писал выше, коэффициенты ряда Тейлора являются координатами тензора, и нет никакого смысла забывать про это и считать их просто наборами чисел.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение12.05.2014, 15:30 
Аватара пользователя
prof.uskov в сообщении #862061 писал(а):
Где-то читал, когда Максвелл решил заниматься физикой

Заметно, что "где-то читал". Там речь шла далеко не о Максвелле.

prof.uskov в сообщении #862061 писал(а):
На самом деле, там работы непочатый край на несколько поколений.

Где, в таблице умножения?

Напомню, речь идёт не о проблеме автоматического управления самой по себе, а о том, какая математика в теории автоматического управления используется на сегодня, и даже не в теории автоматического управления самой по себе, а в тех книжках, по которым вы учились. Не подменяйте предмет разговора. Слова "всё тривиально" относятся не к проблеме, а к тем каменным топорам, с которыми к этой проблеме подступаются такие, как вы.

 
 
 [ Сообщений: 180 ]  На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group