Для того, чтобы получить статистически значимые отличия, надо куда больше информации. И либо точные предположения о распределениях, либо непараметрические критерии при доступе ко всей выборке. А то, о чём я веду - эмпирический приём, который может навести на мысль, но "статистическим доказательством" не может быть.


Если принять, что на самом деле дисперсии равны, а возможные различия случайны, то для объединённой выборки

(здесь я механически повторяю вычитание единицы, как если бы дисперсию считал по обычной схеме, через сумму квадратов отклонение от среднего; но я действительно не знаю, как тут правильно, хотя в данном случае, ввиду одинаковости размаха, это ничего не меняет)

Для t-критерия это достаточно много, чтобы полагать, что различия есть. Но это не "статистический вывод", это "информация к размышлению". На основе которой можно потребовать проверки работы преподавателя отстающего класса, или попросить преподавателя успевающего класса поделиться опытом. Или обосновать необходимость полноценной проверки, в том числе и с построением "законных" статистических сравнений.
В реальности, если распределение может быть любым, возможен, скажем, вариант, что в классах есть один или несколько "гениев" и один или несколько "дебилов" (попадание которых в данный класс, разумеется, случайно), а остальные учатся совершенно ровно.
Предположим, например, что в классе А есть ровно один "дебил" с 50 баллами, несколько (обозначим Y) "гениев" по 90 и остальные с ровно Х баллами у каждого, суммарно дающие 1750 баллов (для среднего 70). В классе Б есть ровно один "гений" с 75 баллами, несколько (обозначим Z) "дебилов" с 35 баллами и остальные с теми же Х баллами, в сумме 1100 баллов.
Тогда


Соответственно

Довольно легко подобрать целые значения Y и Z, чтобы левая и правая части равенства были бы близки с точностью до десятых.
То есть численно то же самое, но вывод совершенно иной - преподавание одинаковое, основная масса получила равный уровень знаний, но есть выбросы, вызванные, возможно, комплектованием класса (причём такой разброс может быть вполне случаен)