2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение03.05.2014, 15:28 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Nataly-Mak в сообщении #856903 писал(а):
Из моих примеров можно добавить к этой гипотезе:

3) если $S/4\equiv 0 \pmod 3$, то шаблон магического куба, составленного из различных простых чисел, состоит из вычетов 1 и 2 по модулю 3.

Вот это уж точно не верно.
Моё последнее решение с $S=780$ имеет шаблон из полной группы вычетов по модулю 3 (0, 1 и 2).

Забираю своё добавление :-)

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение04.05.2014, 06:08 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Цитата:
1 Natalia Makarova 2.6077 03/05/2014
2 Dmitry Ezhov 2.2959 30/04/2014
3 Jarek 0.8655 23/04/2014
4 primesmagicgames 0.0638 21/04/2014

Проверила вручную начисленные баллы (результаты Dmitry Ezhov выложены здесь; результаты Jarek - известные интернетовские результаты, пока ничего нового он не добавил, что очень жаль, почти месяц прошёл... по-видимому, эта задача ему не понравилась).
Вроде всё правильно начислено, совпадает с моими расчётами.

Итак, пока Dmitry Ezhov остаётся единственным настоящим участником конкурса.

ice00 над задачей работает. Он выложил на форуме своего сайта потенциальные массивы для магических кубов 5-го порядка. Это уже хорошо.

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение04.05.2014, 06:44 


18/11/10
75
Nataly-Mak в сообщении #858747 писал(а):
результаты Jarek - известные интернетовские результаты, пока ничего нового он не добавил, что очень жаль, почти месяц прошёл... по-видимому, эта задача ему не понравилась


Понравилась, понравилась, но времени не хватает :-(

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение04.05.2014, 07:12 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Jarek в сообщении #858751 писал(а):
Понравилась, понравилась, но времени не хватает :-(

(Оффтоп)

Вот начнётся 17 мая конкурс на сайте Al Zimmermann, и время у вас сразу же появится.
Бьюсь об заклад :lol:

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение05.05.2014, 11:09 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Цитата:
1 Natalia Makarova 2.9683 05/05/2014
2 Dmitry Ezhov 2.2959 05/05/2014

Я нашла магический куб 5-го порядка - окаймлённый. Правда, магическая константа пока великовата :? $S=18035$.

dmd, как вижу, тоже что-то новенькое нашёл. Судя по баллам, у него новое решение для $n=5$ (задача 1).

Построение окаймлённого магического куба 5-го порядка ну очень красиво! Это притом, что у меня пока нет общей формулы (систему уравнений пока никто не помог решить).

Теперь надо построить окаймлённый магический куб 6-го порядка. Эх, формула нужна :-(

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение05.05.2014, 14:18 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Построила ещё один окаймлённый кубик 5-го порядка - с магической константой $S=15955$.

Поиск решения после генерации двух слоёв куба занимает 5 секунд; на генерацию двух слоёв тоже 5 секунд, итого 10 секунд.
Это нетрадиционный куб 5-го порядка, в котором 125 элементов!

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение05.05.2014, 16:53 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
И ещё один окаймлённый кубик 5-го порядка - с магической константой $S=15835$.

На этом пока с окаймлёнными кубами 5-го порядка закончу. Хотя... надо построить ещё один - с б-о-о-о-льшой магической константой, попробую сделать окаймлённый куб 7-го порядка. Но сначала надо с окаймлёнными кубами 6-го порядка разобраться.

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение07.05.2014, 06:09 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Цитата:
1 Natalia Makarova 3.3195 07/05/2014
2 Dmitry Ezhov 2.2959 05/05/2014

Очень похоже на то, что будем вдвоём с dmd соревноваться :lol:

Вот такой международный конкурс "автоматически" получился. Это притом, что я очень старалась раскрутить конкурс, сделала всё, что могла: 30 личных приглашений, объявления на всех доступных мне ресурсах, объявления на ресурсах друзей; итальянским коллегой создан отличный сайт для конкурса, сервис на высоте.
Но... участников по-прежнему нет.

Я сегодня прямо с утра завершила построение окаймлённого куба 6-го порядка.
Магическая константа моего куба $S=19800$, интернетовское решение улучшено.
dmd уже давно его улучшил. А у меня пока первый куб 6-го порядка.

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение07.05.2014, 09:21 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Это вроде идеи или подсказки :-)

Изображение

Постройте ассоциативный куб 4-го порядка с константой ассоциативности $K=6600$ из различных простых чисел, вставьте этот куб в показанное справа окаймление, и вы получите окаймлённый магический куб 6-го порядка из различных простых чисел.
В том, что получите, не сомневайтесь, я уже получила :wink:
Понятно, что в ассоциативном кубе 4-го порядка нельзя использовать числа, имеющиеся в окаймлении.

[Разумеется, по-хорошему надо сначала построить ассоциативный куб 4-го порядка, а потом для него построить окаймление. Но я окаймление уже построила и предлагаю его в виде подсказки.]

Строить кубы 4-го порядка просто, как ассоциативные, так и не ассоциативные, я их уже много построила. Правда, для не ассоциативного куба пока меньше магической константы $S=780$ у меня нет.

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение07.05.2014, 12:18 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
И ещё один окаймлённый кубик 6-го порядка готов :roll:
с магической константой $S=12600$.
Окаймление в этом кубе составилось за одну секунду! Ну, предварительно были два этапа:
1) построение ассоциативного куба 4-го порядка с магической константой $S=8400$ (константа ассоциативности $K=4200$);
2) cлучайная генерация двух слоёв куба 6-го порядка.
Оба этапа выполнились за считанные секунды.

Вот, оказывается, как просто построить магический куб 6-го порядка из различных простых чисел. Ну, конечно, это наверняка не оптимальное решение; пока решаю задачу в первом приближении. Из задачи №1 мне осталось найти решение для $n=7$.
В задаче №2 пока есть решение только для $n=4$, зато это оптимальное решение ($S=1260$).

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение07.05.2014, 13:37 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Бог любит троицу :D
построила третий окаймлённый кубик 6-го порядка из различных простых чисел с магической константой $S=10080$.

Возможно ли построить подобный куб с меньшей магической константой :?:
Пока не знаю. Тут важно, чтобы в массиве было не менее 108 комплементарных пар простых чисел. В последнем примере имеем 138 комплементарных пар (константа комплементарности равна 3360).

Но пока закончу эксперименты для $n=6$, надо подумать о кубе 7-го порядка.

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение08.05.2014, 15:34 


16/08/05
1154
Nataly-Mak

Можете привести минимальные известные магические кубы 2-го и 3-го порядков?

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение08.05.2014, 15:59 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Магических кубов 2-го порядка из различных натуральных (или целых) чисел не существует. Возможны только кубы с повторениями чисел, например:

Код:
1 2
2 1

2 1
1 2

Минимальные магические кубы 3-го порядка из различных простых чисел приведены
здесь
(ссылка дана в описании конкурсной задачи).
Есть ещё моя последовательность в OEIS магических констант кубов 3-го порядка из простых чисел (ссылка там же).
Посмотрела номер последовательности в OEIS - A239671.

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение09.05.2014, 05:13 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Nataly-Mak в сообщении #860144 писал(а):
Но пока закончу эксперименты для $n=6$, надо подумать о кубе 7-го порядка.

Об окаймлённом кубе 7-го порядка подумала, даже построила такой куб из натуральных чисел.
При обдумывании пришла мысль, что куб 5-го порядка, который будет внутри окаймлённого куба 7-го порядка, не обязательно должен быть ассоциативным: важно, чтобы он был составлен из комплементарных пар чисел, тогда можно взять окаймлённый куб 5-го порядка.
Надо эту мысль проверить.
При построении интернетовского окаймлённого куба 6-го порядка использовался ассоциативный куб 4-го порядка.
Я построила окаймлённые кубы 5-го порядка, внутри которых находятся кубы 3-го порядка; ну, кубы 3-го порядка все ассоциативны.

Что если взять некоторый магический куб 3-го порядка, построить вокруг него окаймлённый куб 5-го порядка, а затем вокруг куба 5-го порядка построить окаймлённый куб 7-го порядка :idea:
Такой получится концентрический магический куб: 3 -> 5 -> 7.

 Профиль  
                  
 
 Re: Programming Contest "Magic Cubes of prime numbers"
Сообщение09.06.2014, 20:39 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Думаю, что несмотря на то, что форум я покинула, надо сказать несколько слов о закончившемся сегодня конкурсе.

Спасибо администрации, что предоставила мне трибуну.
Только... жалкая картина получилась: одинокая фигура автора на трибуне и одинокая фигура единственного участника (dmd) в зале.
К сожалению, на мои личные приглашения принять участие в конкурсе форумчане этого форума ответили глухим молчанием (за исключением VAL).
Я даже затрудняюсь дать оценку этому явлению. Никто не хочет заниматься такой глупой задачей, как построение магических кубов?

Смею уверить всех, что задача эта весьма не глупая и очень даже сложная и интересная.
Построение, к примеру, окаймлённых (концентрических) магических кубов - это симфония! Так красиво, просто слов нет!
Я нашла уникальный концентрический куб 7-го порядка из различных простых чисел, внутри этого куба находятся магические кубы 3-го и 5-го порядков. Решение можно будет увидеть на сайте S. Tognon. Я попросила его открыть для всеобщего обозрения базу данных с решениями.

Турнирная таблица выглядит так:

Цитата:
1 Natalia Makarova 6.3404 08/06/2014
2 Dmitry Ezhov 3.0154 17/05/2014
3 Jarek 0.4615 23/04/2014

Аккаунт Jarek так и остался тестовым; вы видите в этой строке результат, которым оцениваются известные интернетовские решения по сравнению с моими решениями и решениями dmd.
У меня нет полных 7 баллов, потому что у dmd есть некоторые решения лучше моих.

Я решила 7 из 8 конкурсных задач. Мне не удалось решить задачу 2 для $n=7$ (асоциативный куб 7-го порядка).

Но моя работа над кубами с окончанием конкурса не закончилась.
Кроме того, я попросила ice00 сделать программу, которая позволит вводить лучшие решения и по окончании конкурса (как это делается на сайте Al Zimmermann). Он обещал это сделать.

dmd
поздравляю вас с победой в конкурсе!
И спасибо вам огромное за участие!
Жду ваш адрес в личку, чтобы выслать вам приз.

Кому интересно посмотреть уникальные решения задачи о магических кубах из простых чисел, приходите на сайт S. Tognon
http://primesmagicgames.altervista.org/wp/

Здесь публиковать решения не буду, так как не вижу никакого интереса со стороны форумчан.

В заключение о программном обеспечении подобных конкурсов...
Я просила форумчан сделать это на данном сайте. Увы!
Похоже, лень русская распространяется не только на магические квадраты/кубы, она проникает во все области деятельности :lol:
А сделать эти программы, как я поняла, проще пареной репы. ice00 сделал их за пару выходных (он работает и работает очень много, так что время свободное для посторонних занятий у него только в выходные дни).

Писала в личной переписке одному коллеге на этом форуме просьбу помочь с этим вопросом; он ответил, что его не интересует веб-программирование.

Самое поразительное: я даже не просила ice00 делать сайт, который мог бы принять мой конкурс. Я просто написала ему и пригласила принять участие в конкурсе. Он сам загорелся идеей сделать сайт.
Какое счастье иметь таких коллег!
И как огорчительно не иметь их в своём Отечестве :-(

И ещё один упрёк на прощание.
Я тут просила в теме "Решить систему уравнений" (раздел "Помогите решить/разобраться") помочь мне с решением двух систем уравнений, которые описывают окаймлённые кубы 5-го и 6-го порядков.
Увы! Просьба повисла в воздухе. Пару раз помогли, а потом, видимо, надоело. Примерно так рассуждаем: "Повадилась на халяву! Пусть сама устанавливает матпакет и решает."
Угадала? :-)
Ну, я обошлась без общих формул таких кубов (то есть без решений систем). Кубы я построила просто по схеме (и 5-го, и 6-го, и даже 7-го порядков).
Но было всё равно интересно, какое решение будет у систем уравнений.
Вчера написала коллеге из Германии H. Kociemba. Уже много раз он решал мне системы и ничего, не устал. Каждый раз в ответ на мою благодарность он пишет так:

Цитата:
I am glad I could help you.

Понимаете? Человек радуется, что смог помочь другому человеку :!:
Почему же форумчане лишают себя такой радости?

Систему он решил и в этот раз, конечно же.
Я послала ему только систему для окаймлённых кубов 5-го порядка.
Вот решение:

Код:
{{x5->s-x1-x2-x3-x4,x9->s-x10-x6-x7-x8,x15->s-x11-x12-x13-x14,x17->s-x16-x18-x19-x20,x21->s-x1-x11-x16-x6,x22->-x12+x16+x18+x19-x2+x20-x7,x23->s-x13-x18-x3-x8,x24->x10-x14-x19-x4+x6+x7+x8,x25->-s+x1-x10+x11+x12+x13+x14+x2-x20+x3+x4,x30->s-x26-x27-x28-x29,x33->(8 s)/5-2 x26-x27-x28-x29-x31-x32,x34->-s-x10+x11+x12+x13+x14+x2-x20-x26+x3+x4-x46+x47+x48+x49,x35->s/5-x12+x16+x18+x19-2 x2+x20-x27+x44+x45+2 x46-x47-x48-x49-x7,x36->(8 s)/5-x13-x18-x28-2 x3-x44-x8,x37->(3 s)/5+x10-x14-x19-x29-2 x4-x45+x6+x7+x8,x38->-((2 s)/5)-x11-x16+x2+x26+x27+x28+x29+x3+x4-x46-x6,x39->(3 s)/5+x10-x31-x47-x6,x40->(8 s)/5-2 x11-x12-x13-x14-x32-x48,x41->-s-x16+x20+2 x26+x27+x28+x29+x31+x32-x49,x42->(3 s)/5+x46-x47-x48-x49,x43->(2 s)/5-x44-x45-2 x46+x47+x48+x49}}

И заняло это не более 10 минут! Скопировать готовую систему и скормить её матпакету. Ну, по-моему, даже 5 минут хватит. Решение-то матпакет, наверное, выдаёт мгновенно. Чего тут решать-то.
Но... лень нам, не хочется, да ну её, эту полупомешанную бабку :lol:

Да, так вот, я сравнила полученное решение с той схемой, по которой сама строила куб. Оказалось, что у меня тоже 28 свободных переменных (плюс магическая константа куба), как и в этой общей формуле; только у меня другие переменные свободны.

Ну, кажется, всё сказала. Закругляюсь, не буду больше утомлять форумчан своими "словоизлияниями" :D

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 30 ]  На страницу Пред.  1, 2

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group