А-а-а!!! Бли-и-инн... Дошло, кажется! :)
То, что пишут Xaositect и provincialka, закройте ладошкой.
Ваш совет несколько запоздал, я уже успел прочесть эти посты. :) Правда, затем ещё несколько минут тупил по инерции. Почти завершил ещё один огромный пост с глупыми вопросами, и вот тут меня и накрыло. :)
Если я правильно понял, то ответ всё это время был у меня под носом. Собственно говоря, задачу уже давно решили и разжевали для меня решение, а я всё тупил и тупил.
Нет, ну это надо же, в четырёх соснах так заблудиться. А ведь там нет никакой мистики, и решить задачу очень просто: мы всего лишь берём степени двойки и ставим их в соответствие показателям степеней. :)

Можно и покрупнее запилить таблицу при желании:

Ведь для группы

всё будет вот так:

Да-а, прикольная вещь эти мультипликативные группы. :) Чуть мозг мне не взорвали. А всё оказалось элементарно.
Значит, двойка играет в мультипликативной группе ту же роль, что единица в аддитивной.
Это именно та ключевая вещь, до которой я никак не мог додуматься. :) Мне даже в голову не приходило, что между ними можно провести такую обалденную аналогию!
Вот что значит пытаться перескакивать в обучении через несколько ступенек. Небольшой пробел в знаниях — и мозг уже не может "зацепить" нужную цепочку рассуждений, начать её раскручивать. (Если только это не мозг Эйнштейна какого-нибудь. Который сам способен на ходу заполнить пробел.)
Как бы то ни было, за этот день я чаще включал мыслительный аппарат, чем обычно за всю неделю. Это было круто. Спасибо всем! :)