Никого никуда не агитирую. Просто излагаю свой взгляд. Там, где вводится предельный переход - заканчивается анализ как таковой. Аналитичность отсекается напрочь. Излагаю это на уровне своих чувств и естественных наблюдений. Поэтому делайте плиз скидку соответствующую в критике. Не хотите тоже самое прочувствовать - забейте. Анализ может и должен быть в первую очередь наблюдательным, и в самую последнюю - измышлятельным, как сейчас. Предельный переход его делает таковым. Естественный математический талант, данный от природы некоторым людям, вполне способен наблюдать аналитические результаты напрямую без измышлений. Но современный стиль матанализа совсем этому не способствует.
Расскажу как я нашёл ту форму решения кубического уравнения. Ускорение в квадратичном движении постоянно - всем известно, и одновременно это тривиальный аналитический результат матанализа. Аналогично в "кубическом движении" постоянной будет скорость ускорения, т.е. коэффициент при максимальной степени аргумента. Каково же было моё удивление, когда я увидел - именно натурально увидел - что в кубической динамике имеет место вторая константа, которую стандартный анализ абсолютно не способен замечать. Затем неожиданно оказалось, что вторая константа позволяет легко решить полное кубическое уравнение. Это чисто аналитический результат, полученный естественным наблюдением в результате введения в синтаксис двусимвольной переменной. Уверен, многие вообще не втыкают - как это, коэффициенты функции-полинома меняются? Не говоря уже про наблюдение цельной динамической картины в воображении.
Я по себе сужу, поэтому поймите правильно. Прекрасно помню, как я изучал математику. Как только внимание доходит до любого места с предельным переходом - всё, весь наблюдательный потенциал внимания как отсекается. Это видно, если попробовать проанализировать себя в этот момент как бы со стороны. Почему это может быть у других не так? Думаю, что точно так, нечем я не уникален, все мы примерно одинаковы.
Очень любопытно.
А не могли бы вы чуть подробнее рассказать про свою аксиоматику
topic25773.htmlВ частности интересует более подробный рассказ о п.2,п.4
Аксиоматика.
1) состояние - "мгновенный снимок" переменной
2) любая переменная есть изменение между двумя состояниями - начальным и конечным; любая переменная участвует в изложении в обоих своих состояниях - начальном и конечном - и соответственно двусимвольно обозначается
3) любая функция - полином, не существует функций-неполиномов
4) коэффициенты функции-полинома - меняются в зависимости от аргументов вместе с самой функцией, т.е. образуют (не являются, а только образуют) производные функции; сами по себе коэффициенты - не функции, а свободные члены (состояния) соответствующих производных функций
5) первообразная - функция, восстановленная из производной функции
Примечание: третий пункт - не постулат, а скорее акцент, но очень важный, поэтому и включен в аксиоматику.
Исторические предпосылки см. в Юшкевич "История математики" т.3. стр.282-291, а также в
вики (только там неправильно коэффициенты названы функциями; они не функции, а состояния соответствующих производных функций).
-- 01.11.2013, 10:00 --"
Каково же было моё удивление, когда я увидел - именно натурально увидел - что в кубической динамике имеет место вторая константа, которую стандартный анализ абсолютно не способен замечать."
Это можно подробнее объяснить?
Спасибо.