,
Считайте эту строку ответом.
Ответ неполный.
Кроме того, Вы явно уклонились от ответа на ранее заданный вопрос: почему множество отрезков числовой прямой с целочисленными концами (даже дополненное вырожденными и пустыми отрезками) не является топологией?
Вы преподаватель?
И совсем не занимаетесь прикладными задачами, видимо.
Теория множеств, подвешенная в вакууме сама по себе, несомненно, имеет дело только с множествами. Но, кажется, Вы сами не понимаете, что такое множество и зачем оно нужно. Для Вас это просто вещь в себе. Окей, тогда говорить не о чем, холивар раздувать не будем.
Скорее это у Вас потрясающе наивное представление о теории множеств и о её взаимоотношениях с реальным миром. Объекты физического мира ни в каком смысле не являются объектами теории множеств, ибо, как я говорил, в теории множеств нет ничего, кроме кроме множеств или классов. Более того, используя кошек, цвета и прочие упомянутые Вами сущности, принципиально нельзя построить модель теории множеств. Поэтому совокупности этих объектов не будут множествами в том смысле, в каком этот термин употребляется в ZFC или GB.
Из теории множеств.
Множество всех цветовых сочетаний породистых кошек.
Множество пар (Заказчик, Исполнитель) в сфере b2b.
Множество "следов" движения неточечного объекта в пространстве (например, фигура, образуемая кистью конечного размера, на холсте, бумажном либо виртуальном, неважно)
Последнее множество можно разделить на подмножества самопересекающихся и несамопересекающихся следов, и любые два элемента из разных подмножеств не гомеоморфны друг другу.
Однако можно поступить "наоборот". Постройте в теории множеств модели Ваших кошек, их цветов, заказчиков, исполнителей, следов и прочего, что Вам нужно. Когда Вы это сделаете, Ваши утверждения станут осмысленными высказываниями теории множеств, и можно будет обсудить, можно ли на основе этих (теперь уже принадлежащих теории множеств моделей) объектов построить какую-нибудь топологию.
(Оффтоп)
Если на этом форуме в разделе "Помогите разобраться", все будут писать всегда сразу абсолютно правильно и без ошибок, то в разделе нет смысла и его можно закрывать.
Нет. Я говорил о том, что не нужно умышленно писать глупости, чтобы "активировать" кого-то. Просто задайте нормальный вопрос. Вам помогут разобраться.
Ну и я не несу ответственности за специфику Вашего понимания теории множеств.
У меня нет никакой особенной специфики понимания теории множеств и её места в математике и в изучении реального мира. Просто Вы до этого обычного понимания ещё не доросли, и Вы принимаете "наглядные" (но некорректные) примеры за суть теории множеств.
Кроме того, от Вас повторное оскорбление.
Не заметил ни первого, ни второго. В частности, я не называл Вас дураком или идиотом. А в том, что Вы умышленно пишете глупости, "чтобы разговорить тех, кто может помочь",
Вы признались сами. Ну вот, Вы меня и разговорили. Сами этого хотели.
Заработав по 2 балла за помощь в вопросах, теряете по полсотни на "идиотизмах".
Э-э-э... Это Вы о чём? Я здесь скоро уже 8 лет, и не заметил никаких баллов.
Просьба оформлять оффтоп как оффтоп, иначе это как раз и есть нарушение правил.
Бу сде, товарищ командир!
Далее вернёмся к контрпримерам - и просьба не флудить.
К каким контрпримерам? Сформулируйте вопрос более конкретно, чтобы на него можно было ответить. Обсуждать контрпримеры вообще? Хотите, обсудим контрпример к гипотезе Оррин Фринк (теперь уже опровергнутой, раз есть контрпример), что каждое хаусдорфово бикомпактное расширение вполне регулярного топологического пространства является расширением волмэновского типа?