1. «1 есть натуральное число»;
2. «следующее за натуральным числом есть натуральное число»;
3. «1 не следует ни за каким натуральным числом»;
4. «всякое натуральное число следует только за одним натуральным числом»;
5. Аксиома полной индукции.
Опять этот список. Откуда Вы его взяли? Почему-то когда-то появился миф о том, что в оригинале аксиомы звучат именно так. На самом деле скан "Arithmetices principia ..." Пеано найти в интернете не так сложно, и там аксиомы
словами вообще не формулируются.
Поскольку вы все-таки не математик, я сформулирую аксиомы из исходного текста Пеано и пояснения, если считать что они определяют множество натуральных чисел.
А1.
.
"
--- натуральное число."
Следует понимать это так, что постулируется существование некоторого объекта, обозначаемого символом 1, который является натуральным числом. (точнее, существование объекта
постулируется даже не самой аксиомой, а вообще присутствием символа
в нашей теории. Сама аксиома утверждает, что этот объект - одно из натуральных чисел. Другими словами, приняв эту аксиому, мы знаем, что существует по крайней мере одно натуральное число, которое обозначается
.)
А2.
A3.
A4.
Эти три аксиомы утверждают свойства равенства - каждое число равно самому себе, равенство симметрично, и два числа, равные третьему, равны между собой.
A5.
.
Это техническая аксиома для понятия равенства. Она говорит, что если два объекта равны, и один из них - натуральное число, то и другой - тоже натуральное число. Это утверждение очевидно, но в формальной теории мы всегда должны все эти мелочи записывать.
A6.
.
"Для любого натурального числа существует следующее за ним натуральное число"
Вот тут мы наконец-то добираемся до следования. Как и в случае первой аксиомы, тут надо отметить следующее: уже просто из того, что в нашей теории есть функция
(в тексте ранее Пеано поясняет, что этот символ у него является именно обозначением функции), мы можем построить из любого числа
объект
. Аксиома говорит нам, что этот объект тоже будет натуральным числом. То есть теперь мы уже можем записать кроме уже имеющейся единицы такие объекты, как
,
и т.д. Мы знаем, что они все будут натуральными числами, но пока не знаем, могут ли они быть равны между собой.
A7.
"У каждого натурального числа ровно одно следующее за ним и не более одного предшествующего"
Дословный перевод - "если два числа равны, то равны и следующие за ними, и наоборот"
A8.
"
не следует ни за каким натуральным числом"
Из двух последних аксиом мы, немного подумав, можем доказать, что два произвольных числа из последовательности
,
,
... различны.
A9.
Аксиома индукции. Она говорит нам, что наша последовательность
,
,
... - это на самом деле все натуральные числа.