Возникла у меня такая потребность:
Аппроксимировать дискретный сигнал из
равноудаленных выборок, где
, обычными гармониками, т.е. суммой из
функций типа
, где
. Причем круговые частоты не обязаны быть кратны основному периоду (это для того, чтобы можно как можно при меньшем
лучше опроксимировать сигнал).
Естесственно выбрал метод МНК. Составил выражение для суммы квадратов отклонений. Взял производные по
и
. Получается СЛАУ из
уравнений с
неизвестными. При заданых частотах коэф-ты
и
нахожу при помощи метода Гаусса.
Для определения частот успользую итеррационный могомерный метод Ньютона. Вобщем что я могу сказать (сам я не математик). Сходимость не квадратичная. Сумма квадратов минимизируется плавно, причем на определенных итеррациях происходят скачки как вверх так и вниз, т.е. слишком много и рядом расположенных локальных минимумов и происходит перепригывание.
Никакой практической пользы для моего случая нет (хотя аппроксимация худо, но есть), а очень жаль.
Вобщем может кто подскажет методические пособия или теоретические сведения по данной тематике. Обычные учебники по численным методам я читал, мне нужно именно по "Гармоническому МНК". Было бы не плохо, если бы существовал какой-нибудь имперический метод для расчета тех самых частот, которые можно было использовать как начальное приближение при оптимизации, в результате которой решение было бы близко к глобальному минимуму.