Цитата:
aklimets:
Кто бы объяснил что такое "амплитуда вероятности"? Слово "амплитуда" применимо к волнам, слово "вероятность" скорее к частицам.
...Сначала Шредингер ввел волновую функцию как для реальной волны. Потом оказалось, что эта волна фиктивна, так как распространяется в многомерном конфигурационном пространстве. ...Но вопрос то остался, что же это за чудо такое - амплитуда вероятности?
...Лично я считаю, что описание в терминах волновой функции — это не квантовая теория, а классическая, в лучшем случае — полуклассическая с незначительными элементами квантового формализма.
rustot:
...непонятно в каком смысле тут употреблено "имеет физический смысл". может "привычный смысл"?
...ну вот мгновенное значение тока в цепи, комплексное, оно имеет физический смысл? или физический смысл имеют только отдельно его действительная часть, отдельно амплитуда, отдельно фаза
Lvov:
Я уже жалею, что акцентировал внимание на модифицируемых уравнениях Клейна-Гордона, поскольку (мною) не рассматриваются более существенные вопросы, как, например, гипотеза о сущности квантования.
Итак, участники форума начали обсуждать основные вопросы поднятой темы, а я, автор темы, оказался в стороне. Спешу наверстать упущенное.
Свои основные взгляды на базовые проблемы квантовой теории (КТ) я изложил в переработанном по указанию модератора головном сообщении от
4 января на стр.3. Напомню его главные положения.
Несмотря на успехи квантовой теории в части расчета показателей электродинамических явлений, ее базовые положения зачастую парадоксальны и недостаточно убедительны. Квантовая теория не представляется убедительной в части осмысливания физической сущности явлений. Математическое описание процессов здесь излишне формализовано и не всегда корректно.
Какие же базовые положения КТ представляются недостаточно убедительными? Это, прежде всего, положение о дуализме - "волна-корпускула" и отсутствие непосредственного физического смысла волновой функции элементарных микрочастиц. Определяемый из экспериментов размер частицы-корпускулы представляется недостаточным для объяснения относительно большого значения ее спинового момента.
Вызывают недоумение поля “излученного и поглощенного фотонов”, широко используемые в квантовой электродинамике (КЭД). Также представляется странным сохранение постоянных значений координатных проекций некоторых показателей микрочастиц, например, проекции спина электрона на произвольную координатную ось.
Остается без объяснения сущность квантования и отсутствие самодействия электрических зарядов частицы, которое представляется весьма значительным, но никак не учитывается в расчетах при решении задач КТ.
Квантовые явления можно переосмыслить и описать более логичным образом.
Предполагается, что окружающее нас пространство представляет собой некоторую непрерывную физическую среду, называемую в КТ вакуумом. Рассматриваемая среда может находиться в возбужденных состояниях, представляющих собой вакуумные поля. Характерным примером вакуумных полей являются электрические и магнитные поля и электромагнитные волны, распространяющиеся с максимальной скоростью среди всех известных скоростей движения материальных объектов. Специфичным случаем возбуждения вакуума являются распределенные положительные или отрицательные электрические заряды.
Все микрочастицы, в частности фотоны и электроны, представляют собой регулярные осциллирующие вакуумные поля, квантованные в стационарных состояниях. Поля всех микрочастиц имеют общую природу, о чем свидетельствуют взаимопревращения различных микрочастиц и единая скорость распространения возмущений полей элементарных частиц, равная скорости света. Рассматриваемые поля отображаются волновыми функциями частиц. В случае элементарных частиц волновые функции помимо вероятностных характеристик частиц позволяют вычислять распределенные и интегральные их динамические показатели. В случае сложных частиц и их ансамблей волновые функции являются формальными образованиями на основе физических волновых функций элементарных частиц. Тем не менее, и в этом случае волновые функции позволяют вычислять определенные вероятностные и физические показатели микрообъектов.
Относительно большие размеры волновых пакетов наблюдаемых частиц (~
см для атомных электронов) позволяют объяснить их спиновый и магнитный моменты внутренней циркуляцией массы-энергии и электрических зарядов, в то время как в случае квазиточечных частиц-корпускул отсутствует разумное объяснения значений этих параметров.
Микрочастицы-корпускулы, например фотоны и электроны, представляют наблюдаемый результат взаимодействия соответствующих им полей с детектирующим устройством. Они представляют собой не реальные физические, а формально-математические объекты зачастую с весьма малыми размерами (<
см), определяемыми особенностями эксперимента.
Наряду с регулярными полями микрочастиц вакуум характеризуется наличием случайных полей. Случайные вакуумные поля (СВП), прежде всего электромагнитное поле и поля заряженных элементарных частиц - лептонов, взаимодействуют друг с другом, следствием чего является однородность распределения ряда их статистических показателей. В частности, среднее действие СВП, оказывается равным постоянной Планка ћ в каждом их функциональном состоянии. В случае же СВП заряженных частиц каждое их функциональное состояние характеризуется также постоянным средним зарядом, равным по модулю элементарному заряду - e.
Случайные вакуумные поля играют весьма важную роль в квантовых процессах. Именно они обеспечивают квантование полей микрочастиц, компенсацию самодействия их электрических зарядов, наблюдение квазиточечных микрочастиц-корпускул и неоднозначный вероятностный характер результатов измерения показателей микрочастиц.
Квантование стационарного заряженного поля, например электронного, объясняется его непрерывным взаимодействием со случайным вакуумным электронным и электромагнитным полями, в результате чего квантовое действие и электрический заряд регулярного поля частицы выравниваются со среднестатистическими значениями названных показателей СВП - ћ и е. Важным эффектом, обязанным наличию СВП, является тесно связанный с эффектом квантования заряда эффект компенсации самодействия зарядов частицы. Данный эффект объясняется рассеянием исходного поля частицы, например электрона, под действием его собственного электрического поля при одновременной концентрации в области локализации частицы зарядов набегающих электронных СВП, притормаживаемых тем же электрическим полем частицы. Таким образом
микрочастица представляет собой стационарный динамический полевой объект, характеризующийся непрерывным обменом зарядами со случайными вакуумными полями.
Постоянством распределенных зарядов и токов атомных электронных полей объясняется отсутствие электромагнитного излучения и устойчивость атома. Базовые вопросы, связанные с новым пониманием проблем КТ изложены
в головной статье 1 моей публикации "Волновая природа микромира".
Далее я предполагаю рассмотреть подробнее отдельные вопросы, начав с проблемы случайных вакуумных полей.
С уважением О.Львов