Цитата:
zask:
Не совсем понял: так убили Лагранжиан или нет?
Я считаю предложенный лагранжиан более корректным, чем принятый. Однако последнее слово за спецами по КЭД. Со стороны, как говорится, виднее.
Пока по теме не поступают новые замечания и вопросы конструктивного характера, остановлюсь подробнее на проблеме описания частиц и античастиц при использовании раздельных уравнений. Делается это с целью возможности применения классического лагранжева вариационного метода при анализе волновых полей микрочастиц и отказа от формальных операторов нормальных произведений при указанном анализе.
В случае уравнения Клейна-Гордона-Фока (см. статью 9 со ссылкой
на головной странице публикации) разделение производится по знаку релаксационной частоты, который, как известно, является инвариантом при смене ИСО. В случае свободных частиц получаемые уравнения первого порядка по времени для частицы и античастицы имеют следующий вид:
где знак "+" отвечает основной частице, а знак "-" античастице,
Линейный оператор
в выражении (2) следует понимать в смысле разложения радикала в степенной ряд
Справедливость уравнений (2) при указанном определении оператора
следует из того факта, что при подстановке в них спектральных составляющих волновой функции получается правильное релятивистское соотношение для компонент волнового 4-вектора
.
В указанной статье приводятся формулы для лагранжианов уравнений (2) и получаемые на основе этих лагранжианов выражения для вектора плотности заряда-тока и тензора энергии-импульса. Из указанных выражений следует, что плотность электрического заряда, имеет знак, отвечающий знаку заряда частицы, а плотность энергии является положительно определенной величиной.
В статье также приводятся уравнения для частицы и античастицы, взаимодействующих с электромагнитным полем. Далее рассматриваются решения предложенных уравнений при использовании функции Грина и метода рекурсии в случае взаимодействующих частиц.
Вариант раздельного описания частиц и античастиц при использовании уравнений Дирака рассматривается в статье
"Один вариант симметричного описания электронов и позитронов" В данном случае для описания электронов используется известное уравнение Дирака, а для описания позитронов подобное уравнение с обратным знаком перед вторым массовым членом уравнения, см. нижеприводимые формулы для случая свободного электронного и позитронного поля .
(1a)
(1b)
Применение отдельных уравнений электрона и позитрона рассматриваемого вида обеспечивает правильный знак заряда частицы при использовании последовательного вариационного метода.
Оба уравнения характеризуются положительно- и отрицательноэнергетическими решениями. Однако в данном случае отрицательноэнергетические решения не имеют самостоятельного значения, а рассматриваются в качестве "малых" добавок к основному решению данных уравнений, а также как определенные составляющие случайных электронно-позитронных вакуумных полей.
Более подробно данные вопросы рассмотрены в статье 2
"Волновая природа микромира... (квантовые поля и их взаимодействие)" и в отдельной вышеуказанной статье 10.
С уважением О.Львов