2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Точка в R^3 и неголономная связь
Сообщение19.11.2012, 17:55 


10/02/11
6786

(Оффтоп)

Munin в сообщении #646525 писал(а):
scwec в сообщении #646463 писал(а):
Интегрировать будем уравнения из сообщения Oleg Zubelevich.

Это мне неинтересно. Я даже не читал (он у меня в игноре). Спасибо, до свидания.

Мне как старому троллю, весьма приятно отмечать, что в результате моей терапии, некоторые особо пафосные участники теперь ставят себя в глупое положение совершенно добровольно и без моего вмешательства. Так сказать, лечение пошло на пользу. :mrgreen:
Вот и Munin теперь отказался пользоваться общим уравнением динамики именно потому, что я использую это уравнение. Страшно подумать, что он сделает, если я скажу ему не есть экскрементов.

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 16:05 
Заслуженный участник


17/09/10
2158

(Оффтоп)

Вообще-то, обсуждение неголономных систем с давних пор сопровождалось всякими коллизиями. Чтобы свадьба да без драки?
То это дискуссия вокруг перестановочности $d$ и $\delta$, то борьба за первенство первооткрывателей уравнений в квазикоординатах, то просто личная неприязнь, ну, там всего хватало и на самом высоком уровне. Отцы-основатели обвиняли оппонентов (тоже отцов-основателей) в безграмотности, незнании азов и требовали экзаменовать противную сторону. Всё это расходилось по низам. Потом всё как-то успокаивалось. Да, не хотелось бы повторяться. И при чём тут неголономные системы?

Теперь по существу. Проинтегрируйте уравнения движения, если точка движется в $\mathbb{R}^3$ в поле силы тяжести, параллельной оси $z$. Наложенная неголономная связь прежняя $y\dot x+\dot z=0$
(тут уже явно просматривается связь с народным хозяйством).

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 16:29 


10/02/11
6786
тоже легко, положим $g=(0,0,-1)$ тогда
$$\ddot x-y\ddot z-y=0,\quad \ddot y=0,\quad y\dot x+\dot z=0$$

$y=at+b$, первый интеграл
$$\dot x-a(t\dot z-z)-b\dot z-at^2/2-bt=c$$
выражаем отсюда $\dot x$, подставляем в уравнение связи. Получаем линейный дифур первого порядка на $z$

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 18:03 
Заслуженный участник


17/09/10
2158
Переменные разделяются и если $y=at+b$ и $h$- постоянная энергии, то $\int\frac{dz}{\sqrt{2h-a^2+2z}}=\int\frac{(at+b)dt}{\sqrt{1+(at+b)^2}}$.
Это прямо из интеграла энергии. Первое уравнение-то, умноженное на $\dot x$ - полная производная энергии по $t$.
Теперь с соединением точек. С ходу кажется, что точки соединяются, если у них различные $y$. Не факт. Надо подумать.

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 20:02 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)

scwec в сообщении #646968 писал(а):
Вообще-то, обсуждение неголономных систем с давних пор сопровождалось всякими коллизиями. Чтобы свадьба да без драки?

Тут не в теме дело, просто Oleg Zubelevich драчун, да ещё и гордится этим.


scwec в сообщении #646968 писал(а):
(тут уже явно просматривается связь с народным хозяйством).

Если можно, какая?

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 20:06 
Заслуженный участник


17/09/10
2158
Munin в сообщении #647109 писал(а):
Если можно, какая?

В качестве разрядки обстановки.

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 20:30 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)

А она мне не кажется заряженной...

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 20:43 
Заслуженный участник
Аватара пользователя


15/10/08
12980

(Оффтоп)

Oleg Zubelevich в сообщении #646065 писал(а):
по моему опыту неголономных связей здесь не знают

:facepalm:


Если не возражаете, я попытаюсь несколько понизить градус сакральности рассматриваемого типа задачек...

Откроем ЛЛ т.1 §38 "Соприкосновение твердых тел" и с тщанием употребим глазами текст от формулы (32,2) аж до формулы (38,5). Усвоив прочитанное, поимеем
$$\[
\begin{gathered}
  \ddot x = \lambda  \cdot y \hfill \\
  \ddot y = 0 \hfill \\
  \ddot z = \lambda  \hfill \\ 
\end{gathered} 
\]
$$
где $\lambda  = \lambda \left( {x,y,z} \right)$ и для простоты я взял первую сформулированную здесь задачу.

Дальше - школа:
$$y = C_1  + C_2 t$$
$$\dot x = \frac{{C_3 }}{y}e^{ - \frac{{y^2 }}{2}} $$
и т. д. и т. п. до победы...

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 21:56 


10/02/11
6786
и как ЛЛ-1 советует писать уравнения движения, скажем, в случае связи $ay\dot x+(1+t^2)\dot z+bxt=0$? (точка опять в $\mathbb{R}^3$ и активных сил нет, $a,b$ -- ненулевые константы) Просто любопытно. :wink:

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение20.11.2012, 22:31 
Заслуженный участник
Аватара пользователя


15/10/08
12980
Oleg Zubelevich в сообщении #647219 писал(а):
как ЛЛ-1 советует

Напрямую - никак, но и здесь наверняка можно что-то придумать. Подробнее постараюсь ответить завтра.

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение21.11.2012, 13:46 
Заслуженный участник


17/09/10
2158
Утундрий в сообщении #647154 писал(а):
Дальше - школа:
$$y = C_1  + C_2 t$$
$$\dot x = \frac{{C_3 }}{y}e^{ - \frac{{y^2 }}{2}} $$
и т. д. и т. п. до победы...

Однако, на самом деле $\dot x=\frac{C}{\sqrt{1+y^2}}$, где $C=\operatorname{const}$.
Подробно всё разбиралось в прежних сообщениях.

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение25.11.2012, 22:23 
Заслуженный участник
Аватара пользователя


15/10/08
12980
scwec в сообщении #647489 писал(а):
Подробно всё разбиралось в прежних сообщениях.

Я туда, признаться, не долистал. А здесь почему-то игрек уронил из числителя в знаменатель. Впрочем, ошибка настолько очевидна, что ее даже не требуется исправлять.

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение30.11.2012, 00:33 


10/02/11
6786
Задача.
В пространстве под действием силового поля с потенциалом $V=\frac{b}{2}( x^2+ y^2+ z^2),\quad b>0$ движется точка массы $m$. На точку наложена идеальная связь $\dot z=\dot x\cos(ay),\quad a\ne 0.$ Найти частоты малых колебаний точки около положения равновесия $(1,0,-1).$

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение04.01.2013, 18:09 
Заслуженный участник


17/09/10
2158
Вернусь к результатам первоначальной задачи.
Уравнения движения не представляют труда для интегрирования, однако уже здесь проявляются некоторые особенности негологомных систем.
Имеем два перых интеграла, линейных по скоростям. $\dot y=C_1$ (рассматривать пока не будем).
Вот другой: $\sqrt{1+y^2}{\dot x}=C_2$.
На его примере покажем, как из общей конструкции получается линейный интеграл.
Введем три линейно независимые 1-формы $\omega^1=dx,\omega^2=dy, \omega^3=ydx+dz$ напомню,что $\omega^3=0$ - связь и три дуальных им векторных поля $X_1,X_2,X_3$. Легко видеть, что
$X_1=\frac{\partial}{\partial{x}}-y\frac{\partial}{\partial{z}},X_2=\frac{\partial}{\partial{y}}, X_3=\frac{\partial}{\partial{z}}$
Коммутаторы $[X_1,X_2]=X_3,[X_1,X_3]=0,[X_2,X_3]=0$. Здесь обнаруживается, что мы имеем дело с классическими объектами - контактной структурой $\omega^3$ на $\mathbb{R}^3$ и нильпотентной алгеброй Ли, натянутой на $X_1,X_2,X_3$ - алгеброй Гейзенберга.
Рассмотрим квадратичную форму, соответствующую кинетической энергии $T=\frac{1}{2}(\omega^1)^2+\frac{1}{2}(\omega^2)^2+\frac{1}{2}(\omega^3-y\omega^1)^2$ и векторное поле $X=\frac{1}{\sqrt{1+y^2}}X_1$. Пусть $L_X$ - производная Ли. Тогда в нашем случае $L_X(T)=\omega^3\cdot{\alpha}$, где $\alpha$ - 1-форма.
Последнее равенство влечет существование линейного по скоростям интеграла. Поскольку $X=\frac{1}{\sqrt{1+y^2 }}X_1+0\cdot{X_2}+0\cdot{X_3}$, то первый интеграл имеет вид $\frac{\partial{T}}{\partial{\omega^1}}\frac{1}{\sqrt{1+y^2 }}=\operatorname{const}$, что и есть искомый первый интеграл. Описанная выше конструкция есть аналог теоремы Нётер в голономном случае.

 Профиль  
                  
 
 Re: Точка в R^3 и неголономная связь
Сообщение21.01.2013, 14:16 
Заслуженный участник


17/09/10
2158
От уравнений движения точки, которые выше были написаны и проинтегрированы, перейдем к другой части неголономной теории.
Определение. Гладкую кривую $\gamma: \mathbb{R}^1\to\mathbb{R}^3$ будем называть допустимой, если $\omega^3(\dot \gamma)=0$. По прежнему $\omega^3=ydx+dz$.
Теперь задача. Докажите, что любые две точки $\mathbb{R}^3$ можно соединить допустимой кусочно-гладкой кривой конечной длины.
От этой задачи (для любых вполне неголономных многообразий - это теорема П.К.Рашевского-Чжоу) начинается дорога в теорию неголономных римановых многообразий.
Для нашего конкретного случая доказательство вполне элементарно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 31 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group