2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5  След.
 
 Уравнение a^6+4b^3=c^2 (отделено от темы ВТФ для n=3)
Сообщение07.09.2012, 14:06 
Заблокирован


27/08/12

23
Господа!
Предлагаю вашему вниманию вариант преобразования приведенного здесь уравнения $a^6+4b^3=c^2$, точнее, его варианта:
$(c-a^3)(c+a^3)=4b^3$
Обозначим:
$c-a^3=p$
Тогда: $c=p+a^3$
$4b^3=p(p+a^3+a^3)=p^2+2pa^3$
$2pa^3=4b^3-p^2$
$a^3=\frac{4b^3-p^2}{2p}$.
Чтобы число $a^3$ было целым числом, число $b$ должно содержать сомножитель $p$ или, наоборот, число $p$ должно быть сомножителем числа $b$, т.е. должно быть:
$b=kp$.
При этом сомножитель $p$ должен быть четным числом.
Тогда:$a^3=\frac{4(kp)^3-p^2}{2p}$
Отсюда: $a^3=\frac{4(kp)^3-p^2}{2p}=\frac{p(4k^{3}p-1)}{2}$.
Тогда: $c=p+a^3=p+\frac{4(kp)^3-p^2}{2p}=\frac{p(4k^{3}p+1)}{2}$.
Очевидно, что $c$ целое число, так как $p$ четное число.
Не очевидно, что $a$ целое число.
Но главное, числа $(a, b, c)$ имеют общий сомножитель $p$, т.е. они не взаимно простые. Поэтому при условии, что числа $(a, b, c)$ должны быть взаимно простыми, уравнение $a^6+4b^3=c^2$ не имеет решения в целых числах.

 i  AKM:
Отделено отсюда.

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 14:11 
Заслуженный участник


04/05/09
4589
klitemnestr в сообщении #615876 писал(а):
$a^3=\frac{4b^3-p^2}{2p}$.
Чтобы число $a^3$ было целым числом, число $b$ должно содержать сомножитель $p$
Ошибка.

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 14:29 
Заблокирован


27/08/12

23
venro
Приведите пример.

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 14:47 


14/01/11
3062
klitemnestr в сообщении #615887 писал(а):
Приведите пример.

$b=2, p=4$.

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 15:06 
Заблокирован


27/08/12

23
Sender
У $b=2$ и $p=4$ общий сомножитель или общий делитель $2$, так что я прав. Я привел самый простой пример преобразования исходного уравнения. Число $p$ может быть больше числа $b$ при условии, что $4b^3-p^2>0$. Приведите примеры с составными числами, содержащими нечетные сомножители.

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 15:46 
Заслуженный участник


20/12/10
9107
klitemnestr в сообщении #615876 писал(а):
Чтобы число $a^3$ было целым числом, число $b$ должно содержать сомножитель $p$ или, наоборот, число $p$ должно быть сомножителем числа $b$, т.е. должно быть:
$b=kp$.
Уж если Вы сформулировали это утверждение, Вы должны привести его доказательство, а не требовать контрпримеров, его опровергающих.
klitemnestr в сообщении #615876 писал(а):
Поэтому при условии, что числа $(a, b, c)$ должны быть взаимно простыми, уравнение $a^6+4b^3=c^2$ не имеет решения в целых числах.
Открою Вам тайну: решений не будет, даже если Вы разрешите целым числам $a$, $b$, $c$ не быть взаимно простыми (конечно, при условии $ab \neq 0$).

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 15:49 
Заслуженный участник


04/05/09
4589
klitemnestr в сообщении #615887 писал(а):
venro
Приведите пример.
$b=3, p=2$

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 16:28 
Заблокирован по собственному желанию
Аватара пользователя


18/05/09
3612
 !  klitemnestr, не искажайте ники участников!
klitemnestr в сообщении #615887 писал(а):
venro
Приведите пример.

Не знаю, пользуетесь ли Вы "окном быстрого ответа" (Личный раздел --> Личные настройки --> Настройки отображения --> Показывать панель быстрого ответа в темах:), но просто кликнув на ник пользователя в верхней строке сообщения, Вы получите готовую копию в панели быстрого ответа.

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 17:01 
Заблокирован


27/08/12

23
Доказательство простое: $(abc\pm d)$ не делится на $d$. Алгебраическая сумма двух чисел, из которых одно число рано $d$, делится на $d$ только в том случае, если в состав сомножителей друго числа тоже входит сомножитель $d$.

В приведенных примерах используется число $2$ с расчетом на то,что в числителе $(4b^3-p^2)$ имеется число $4$. В этакой интерпретации число $b$ может иметь любые значения. Я думаю, вы исчерпали примеры с числами $2$ и $4$.
Приведите примеры с составными числами.

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 17:27 
Заслуженный участник


04/05/09
4589
$b=111, p=54$

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение07.09.2012, 17:33 
Заслуженный участник


20/12/10
9107
klitemnestr в сообщении #615936 писал(а):
Алгебраическая сумма двух чисел, из которых одно число рано $d$, делится на $d$ только в том случае, если в состав сомножителей другого числа тоже входит сомножитель $d$.
А это неверно для составных $d$.

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение08.09.2012, 14:08 
Заблокирован


27/08/12

23
Числа $b=111$ и $p=54$ содержат общий сомножитель $3$: $b=111=3\cdot 37$; $p=54=3^3\cdot 2$.
Имеет место манипуляция с числами $2$ и $3$, содержащимися в формуле $a^3=\frac{4b^3-p^2}{2p}$ и в числах $(b,p)$:
$a^3=\frac{4\cdot 3^3\cdot37^3-(3^3\cdot 2)^2}{2\cdot3^3\cdot 2}=\frac{3^3\cdot 4(50653-27)}{3^3\cdot 4}=50626$.

$(abcde\pm knm)$ не делится на $(knm)$ [имеется ввиду, что $(a,b,c,d,e,k,n,m)$ простые числа].
Я изложил условия, при которых числа $a^3$ (не $a$) и $c$ будут целыми числами. При других условиях эти числа заведомо дробные. О чем спор?

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение08.09.2012, 14:12 
Заслуженный участник


20/12/10
9107
klitemnestr в сообщении #616154 писал(а):
О чем спор?
Это не спор, это констатация факта: Вы не доказали, что уравнение $a^6+4b^3=c^2$ не имеет решений. Ваше рассуждение содержит грубую ошибку (впрочем, довольно распространённую).

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение08.09.2012, 14:31 
Заблокирован


27/08/12

23
Во-первых, покажите мою "грубую ошибку".
Во-вторых, я показал, что при заданном числе $b$ число $c$ является целым числом.
В-третьих, целочисленность числа $a$ под вопросом. Я не утверждаю, что оно дробное число, так же как и то, что оно может быть целым числом. Остается решить вопрос: имеет ли решение в целых числах уравнение: $a^3=\frac{4(kp)^3-p^2}{2p}$?

 Профиль  
                  
 
 Re: ВТФ для n=3
Сообщение08.09.2012, 14:40 
Заслуженный участник


20/12/10
9107
klitemnestr в сообщении #616163 писал(а):
Во-первых, покажите мою "грубую ошибку".
На том основании, что $4b^3$ делится на $2p$, Вы делаете вывод, что $b$ делится на $p$ и пишите $b=kp$. Это --- грубейшая ошибка. Остальные Ваши изыскания смысла не имеют.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 67 ]  На страницу 1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group