Любое арифметическое утверждение доказуемо в противоречивой системе аксиом, но этим не доказывается его истинность. Если оно доказуемо в непротиворечивой системе аксиом, то этим тоже не доказывается его истинность. Значит, его истинность не зависит от системы аксиом.
Нет, это значит, что истинность не следует из доказуемости в какой бы то ни было системе аксиом. Отсюда возникает вопрос: Что Вы понимаете под "истинностью"? Вы ведь, вроде, полагаете, что она существует (раз утверждаете, что она "объективна")?
По моим понятиям, раз уж мы приняли
какую-то аксиоматику, то всё доказуемое в ней можем смело считать "истинным". Но такая истинность как раз
зависит от принимаемой системы аксиом.
Для того чтобы из доказуемости утверждения о непротиворечивости системы аксиом Пеано следовала его истинность, система аксиом, в которой оно доказуемо должно удовлетворять двум условиям: во-первых, она должна быть непротиворечива
Видите какая штука получается:
Вы доказали непротиворечивость аксиоматики Пеано в некой системе мета-аксиом, но теперь Вам нужно убедиться, что непротиворечива сама эта система мета-аксиом. Для этого, очевидно, Вам придётся принять ещё одну систему: мета-мета-аксиом, в которой Вы докажете непротиворечивость системы мета-аксиом. И где же будет конец этой цепочки мета-... ?
во-вторых, в ней должны быть доказуемы все проверяемые равенства (содержащие числа и знаки сложения, умножения и равенства)
Что такое "проверяемое равенство"? Типичное истинное недоказуемое арифметическое утверждение обычно звучит примерно так: "Не существует такого натурального числа, которое удовлетворяет ...", - и далее вместо троеточия идёт некое условие. Вы будете перебирать ВСЕ натуральные числа, чтобы проверить это утверждение?