Да. Здесь явно просматривается связь между величиной интервала простых чисел
и максимально возможной разностью на этом интервале.
Вот я и хочу показать, что расстояния между последовательными простыми числами 2, 3, и.т.д. является границей сходимости. Если просеивать эту последовательность арифметической прогрессией и увеличить расстояние между простыми числами, то последовательность будет расходиться. А если взять в основании треугольника Гильбрайта последовательность решета Эратосфена, где расстояние будет меньше, чем между последовательными простыми числами. то треугольник будет сходиться.
-- 08.06.2012, 22:14 --Продолжение о сходимости треугольника Гильбрайта, в основании которого находится подпоследовательнось решета Эратосфена.
Отметим, что после r-ого шага решета Эратосфена, получаемая подпоследовательность будет содержать не r последовательных простых чисел, а n1-1>r последовательных простых чисел: 2, 3, …pr, pr+1,… pn1 <p2r+1. Поэтому треугольник Гильбрайта будет сходиться уже для основания с n1-1 последовательными простыми числами. Например, после 4 шагов решета Эратосфена, кроме простых чисел: 2,.3, 5, 7 подпоследовательность будет содержать последовательные простые числа от 11 до 113, т.е еще 26 простых числа.
Теорема 4. Треугольник Гильбрайта, в основании которого находится подпоследовательность, получаемая после любого наперед заданного числа шагов решета Эратосфена, сходится.
Доказательство
Если треугольник Гильбрайта сходится для
последовательных простых чисел, то после
шагов решета Эратосфена мы получим в основании треугольника Гильбрайта подпоследовательность, при которой треугольник будет сходиться. При этом в основании треугольника Гильбрайта будут находиться следующие простые числа:
.
Мы можем повторять эту процедуру k раз до тех пор, пока количество последовательных простых чисел в основании треугольника Гильбрайта nk-1 не превысит нужного, наперед заданного, числа N. Таким образом, треугольник Гильбрайта, в основании которого находится подпоследовательность, получаемая после любого наперед заданного числа шагов решета Эратосфена, сходится ч.т.д.
Буду благодарен за замечания и предложения.