Может быть можно уже переходить к формулам?
Я рассуждаю так:
Напишем уравнение плоскости в общем виде:

Преобразуем:

Переобозначим:

И в таком виде будем искать уравнение асимптотической плоскости.
Если z=f(x,y) - уравнение поверхности, которую мы исследуем на наличие наклонных и горизонтальных ассимптотических плоскостей, то

(при x стремящемся к бесконечности)

(при y стремящемся к бесконечности)
Пока правильно рассуждаю? А как быть с коэффициэнтом b?
-- Вс июн 03, 2012 15:35:06 -- Ну давайте заменим слово "этой" на слово "данной".
Да не о том я. Как бы мы не заменяли, но при (подразумеваемом Вами) "перемещении" эта/данная линия сразу перестаёт быть этой/данной. Лишних слов в определениях не должно быть. Математические определения так не делаются. И это была самая простая из множества претензий к тому определению.
Можно заменить слово "перемещении" на слово "удалении". Как это сделано в учебнике "Дифференциальное и интегральное исчисление" Пискунов (1 том) в определении асимптоты функции одной переменной и в Википедии. Тогда получится:
"Асимптотическая плоскость - плоскость, обладающая тем свойством, что расстояние от точек некоторой линии, лежащей на поверхности, до этой плоскости стремится к нулю при
удалении линии вдоль поверхности в бесконечность." (cлово "данной" убрал)
Но сути это не меняет. Пискунов пишет в своём учебнике: "Мы говорим, что переменная точка М движется по кривой в бесконечность, если расстояние этой точки от начала координат неограниченно возрастает". Так же и мы можем написать, что "переменная кривая L движется по поверхности в бесконечность, если расстояние от начала координат до этой кривой неограниченно возрастает".
А какие ещё претензии к определению?