2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 60  След.
 
 Re: Что Вас потрясло в математике?
Сообщение06.05.2012, 02:58 
Заблокирован


28/04/12

125
Что меня потрясло в математике, когда я осознал ее характер после того, как расстался с нею навсегда по окончанию универа? Ее "блеск и нищету". "Блеск" ее в том, что она имеет покладистый (непротиворечивый) характер, если, конечно, не спутается с актуальной бесконечностью, и эта ее черта вовсе не нуждается в доказательстве, потому что ее основание - логика закона тождества: A=A и закона tertium non danur (либо А, либо не-А). Поэтому, как показывает логика машины Тьюринга (а это обобщенное понятие алгоритма), любое конечное множество для пересчета может быть реализовано двумя индивидными символами - 0 и 1. Отсюда немедленно проявляется субстанциальная "нищета" математики, а именно: она ничего не в силах родить существенного, кроме того, чтобы преобразовать одну когнитивно пустую тавтологию в другую, столь же пустую, потому что все они эквивалентны нулю. В самом деле:A=A равносильно A-A=0. Но нуля (ничто, как говорили древние греки и римляне) в Природе не существует. И это истинная правда, потому что эта гипотеза противоречит закону сохранения энергии. Нуль, равно, как и бесконечность - это пределы, к которым мы устремляем наши немыслимо длинные рассуждения при работе с переменными величинами. Еще Аристотель в "Физике", опровергая антиномии Зенона, пытался показать, но не смог этого сделать из-за слабости тогдашнего языка, что отношения двух бесконечных малых есть величина конечная (например, скорость, которая характеризует движение). После этого потрясения я понял, что только содержательная аксиоматика (по Евклиду, но не формальная, по Гильберту) способна организовать построение (конструирование, если следовать терминологии Брауэра) когнитивно содержательных баз знаний (теорий). В целом же - это семиотические (открытые и динамические) системы, но из них всегда можно выделить формальные подсистемы. И именно этому учит гильбертовский формализм, задача которого состоит в том, чтобы его ЯЗЫК оставался непротиворечивым и понятным машине Тьюринга.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение19.05.2012, 19:29 


15/05/12

359
Прежде всего, меня удивил последний комментарий. Я согласен, что идеального в природе не существует. Но применять знаки равенства и тождества в одинаковых смыслах-это немного нетриавиально!
Что касается меня, то я был восхищён доказательством формулы Эйлера В-Р+Г=2. Ещё- необычными возможностями меченой линейки (которой даже можно построить целочисленный треугольник, да ещё двумя методами!). Ещё-многомерной Евклидовой геометрией (по поводу этого можно посмотреть в теме"Подобные призмы в многомерном пространстве"). В целом могу сказать, что математика для меня- то же, что и поэзия.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение22.05.2012, 01:43 


03/05/12
56
Ktina в сообщении #533572 писал(а):
К своему стыду, только сегодня узнала о негапозиционных системах счисления. Вот уж потрясло так потрясло - баллов девять будет по шкале Рихтера!

Когда пытался читать Кнута, тоже удивился. В 4 главе второго тома "Искусства программирования" приводится история развития способов представления чисел и сами эти способы. Интересны уравновешенная троичная система, система счисления с комплексным основанием 2i, да и многие другие. Правда, доказательств многих вещей в самой книге нет, для этого надо почитать ещё что-то.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение22.05.2012, 11:01 
Аватара пользователя


01/12/11

8634
lim(f(x)) в сообщении #574444 писал(а):
Ktina в сообщении #533572 писал(а):
К своему стыду, только сегодня узнала о негапозиционных системах счисления. Вот уж потрясло так потрясло - баллов девять будет по шкале Рихтера!

Когда пытался читать Кнута, тоже удивился. В 4 главе второго тома "Искусства программирования" приводится история развития способов представления чисел и сами эти способы. Интересны уравновешенная троичная система, система счисления с комплексным основанием 2i, да и многие другие. Правда, доказательств многих вещей в самой книге нет, для этого надо почитать ещё что-то.

То, что доказательств у Кнута нет - не удивительно. Автор преследовал иные цели. Как говорится в одной поговорке, чистая математика делает то, что можно, и так, как нужно, а прикладная - то, что нужно, и так, как можно.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 12:42 
Аватара пользователя


01/12/11

8634
Что ещё меня потрясло?
Например, вот это: http://mathworld.wolfram.com/SeedofLife.html
Красиво, правда?

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 20:21 
Заслуженный участник
Аватара пользователя


30/01/09
7060
Ktina в сообщении #575545 писал(а):
Красиво, правда?

Согласен. Вспомнил, что мне в каком-то начальном классе школы удивило то, что можно одним циркулем построить правильный шестиугольник. (Вернее - найти его вершины. Стороны потом всё равно линейкой проводились).

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 20:51 
Аватара пользователя


01/12/11

8634
мат-ламер в сообщении #575777 писал(а):
Ktina в сообщении #575545 писал(а):
Красиво, правда?

Согласен. Вспомнил, что мне в каком-то начальном классе школы удивило то, что можно одним циркулем построить правильный шестиугольник. (Вернее - найти его вершины. Стороны потом всё равно линейкой проводились).

Вы об этом?

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 22:00 
Заслуженный участник
Аватара пользователя


30/01/09
7060
Ktina в сообщении #575805 писал(а):
Вы об этом?

Да.

-- Чт май 24, 2012 23:01:52 --

А уже после вызвало удивление, что можно циркулем и линейкой построить 17-угольник, а 15-угольник - нет.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 22:08 
Аватара пользователя


01/12/11

8634
мат-ламер в сообщении #575844 писал(а):
А уже после вызвало удивление, что можно циркулем и линейкой построить 17-угольник, а 15-угольник - нет.

Насчёт 17-угольника, вроде, Гаусс доказал. Даже на его могиле 17-угольник высечен.
А почему 15 нельзя?

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 22:11 
Заслуженный участник
Аватара пользователя


30/01/09
7060
Ktina в сообщении #575854 писал(а):
А почему 15 нельзя?

Статья была в "Кванте" - "Дебют Гаусса". Гуглом можно найти.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 22:14 
Аватара пользователя


01/12/11

8634
Легко: http://kvant.mccme.ru/1972/01/debyut_gaussa.htm

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 22:25 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва
мат-ламер в сообщении #575844 писал(а):
можно циркулем и линейкой построить 17-угольник, а 15-угольник - нет
Почему это пятнадцатиугольник нельзя? Треугольник и пятиугольник можно, значит, углы $\frac{2\pi}3$ и $\frac{2\pi}5$ строятся. А тогда $\frac{2\pi}{15}=2\cdot\frac{2\pi}5-\frac{2\pi}3$.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 22:31 
Заслуженный участник
Аватара пользователя


30/01/09
7060
А я перепутал пятнадцатиугольник с девятиугольником.

-- Чт май 24, 2012 23:35:57 --

Что любопытно, так то, что эта задача до конца не исследована. Т.е. не исключена возможность нахождения нового многоугольника, который можно построить, и который не вписывается в ранее описанные серии.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 22:37 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва
мат-ламер в сообщении #575872 писал(а):
Что любопытно, так то, что эта задача до конца не исследована. Т.е. не исключена возможность нахождения нового многоугольника, который можно построить, и который не вписывается в ранее описанные серии.
Ещё Гаусс здесь всё до конца исследовал.

 Профиль  
                  
 
 Re: Что Вас потрясло в математике?
Сообщение24.05.2012, 22:41 
Заслуженный участник


20/12/10
9049
Someone в сообщении #575878 писал(а):
Ещё Гаусс здесь всё до конца исследовал.
Но никто пока точно не знает, есть ли ещё простые числа Ферма, кроме уже известных.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 889 ]  На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 60  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group