Ну, у Кендалла и Стьюарта, "Теория распределений", М., Наука, 1966 в гл. 10 можно найти формулу для дисперсии 4-го семиинварианта (который и есть эксцесс), выражаемую через моменты распределения (2-й - 8й). Правда, она выводится не с теми поправками на смещённость, которые вводились при выводе формулы для эксцесса нормального распределения (и без которых формула для дисперсии эксцесса нормального выглядит малость проще:
, но для больших n эти поправки весьма малы, а при малых считать эксцесс, тем более его дисперсию дело несколько ненадёжное.
Так что, подставив моменты желаемого распределения, можно получить формулу для дисперсии, работающую при больших n.
-- 04 май 2012, 09:21 --Для логистического можно вывести самому. Взяв у Кендалла формулу
(оговорка о том, что это без поправок на несмещённость, так что верна асимптотически, остаётся)
а моменты логистического распределения равны
где
числа Бернулли.